EL之DT&RF&GBT:基于三种算法(DT、RF、GBT)对泰坦尼克号乘客数据集进行二分类(是否获救)预测并对比各自性能-阿里云开发者社区

开发者社区> 一个处女座的程序猿> 正文

EL之DT&RF&GBT:基于三种算法(DT、RF、GBT)对泰坦尼克号乘客数据集进行二分类(是否获救)预测并对比各自性能

简介: EL之DT&RF&GBT:基于三种算法(DT、RF、GBT)对泰坦尼克号乘客数据集进行二分类(是否获救)预测并对比各自性能
+关注继续查看

输出结果

image.png

image.png


设计思路

image.png


核心代码

vec = DictVectorizer(sparse=False)  

X_train = vec.fit_transform(X_train.to_dict(orient='record'))

X_test = vec.transform(X_test.to_dict(orient='record'))

dtc.fit(X_train, y_train)

dtc_y_pred = dtc.predict(X_test)

rfc.fit(X_train, y_train)

rfc_y_pred = rfc.predict(X_test)

rfc.score(X_test, y_test)

classification_report(rfc_y_pred, y_test)

gbc.fit(X_train, y_train)

gbc_y_pred = gbc.predict(X_test)

gbc.score(X_test, y_test)

classification_report(gbc_y_pred, y_test)


版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
ML之LiR&2PolyR:使用线性回归LiR、二次多项式回归2PolyR模型在披萨数据集上拟合(train)、价格回归预测(test)
ML之LiR&2PolyR:使用线性回归LiR、二次多项式回归2PolyR模型在披萨数据集上拟合(train)、价格回归预测(test)
12 0
ML之DT:基于DT决策树算法(对比是否经特征筛选FS处理)对Titanic(泰坦尼克号)数据集进行二分类预测
ML之DT:基于DT决策树算法(对比是否经特征筛选FS处理)对Titanic(泰坦尼克号)数据集进行二分类预测
35 0
ML之RF&XGBoost:分别基于RF随机森林、XGBoost算法对Titanic(泰坦尼克号)数据集进行二分类预测(乘客是否生还)
ML之RF&XGBoost:分别基于RF随机森林、XGBoost算法对Titanic(泰坦尼克号)数据集进行二分类预测(乘客是否生还)
24 0
【技术干货】想要高效采集数据到阿里云Elasticsearch,这些方法你知道吗?
本文全面介绍了Elastic Beats、Logstash、语言客户端以及Kibana开发者工具的特性及数据采集到阿里云Elasticsearch(简称ES)服务中的解决方案。帮助您全面了解原理并选择符合自身业务特色的数据采集方案。
3243 0
ML之K-means:基于DIY数据集利用K-means算法聚类(测试9种不同聚类中心的模型性能)
ML之K-means:基于DIY数据集利用K-means算法聚类(测试9种不同聚类中心的模型性能)
34 0
DL之Attention:基于ClutteredMNIST手写数字图片数据集分别利用CNN_Init、ST_CNN算法(CNN+SpatialTransformer)实现多分类预测(二)
DL之Attention:基于ClutteredMNIST手写数字图片数据集分别利用CNN_Init、ST_CNN算法(CNN+SpatialTransformer)实现多分类预测
39 0
DL之RNN:人工智能为你写小说——基于TF利用RNN算法训练数据集(William Shakespeare的《Coriolanus》)替代你写英语小说短文、训练&测试过程全记录
DL之RNN:人工智能为你写小说——基于TF利用RNN算法训练数据集(William Shakespeare的《Coriolanus》)替代你写英语小说短文、训练&测试过程全记录
24 0
DL之Attention:基于ClutteredMNIST手写数字图片数据集分别利用CNN_Init、ST_CNN算法(CNN+SpatialTransformer)实现多分类预测(一)
DL之Attention:基于ClutteredMNIST手写数字图片数据集分别利用CNN_Init、ST_CNN算法(CNN+SpatialTransformer)实现多分类预测
39 0
+关注
一个处女座的程序猿
国内互联网圈知名博主、人工智能领域优秀创作者,全球最大中文IT社区博客专家、CSDN开发者联盟生态成员、中国开源社区专家、华为云社区专家、51CTO社区专家、Python社区专家等,曾受邀采访和评审十多次。仅在国内的CSDN平台,博客文章浏览量超过2500万,拥有超过57万的粉丝。
1701
文章
0
问答
文章排行榜
最热
最新
相关电子书
更多
《2021云上架构与运维峰会演讲合集》
立即下载
《零基础CSS入门教程》
立即下载
《零基础HTML入门教程》
立即下载