PolarDB-X 1.0-用户指南-SQL调优指南-SQL调优进阶-查询执行器介绍

本文涉及的产品
云原生数据库 PolarDB 分布式版,标准版 2核8GB
简介: 本文介绍PolarDB-X的SQL执行器如何执行 SQL中无法下推的部分。

基本概念

SQL执行器是PolarDB-X中执行逻辑层算子的组件。对于简单的点查SQL,往往可以整体下推存储层MySQL执行,因而感觉不到执行器的存在,MySQL的结果经过简单的解包封包又被回传给用户。但是对于较复杂的SQL,往往无法将SQL中的算子全部下推,这时候就需要PolarDB-X执行器执行无法下推的计算。

例如,对于如下查询SQL:

SELECT l_orderkey, sum(l_extendedprice *(1 - l_discount)) AS revenue
FROM CUSTOMER, ORDERS, LINEITEM
WHERE c_mktsegment = 'AUTOMOBILE'
  and c_custkey = o_custkey
  and l_orderkey = o_orderkey
  and o_orderdate < '1995-03-13'
  and l_shipdate > '1995-03-13'
GROUP BY l_orderkey;

通过EXPLAIN命令看到PolarDB-X的执行计划如下:

HashAgg(group="l_orderkey", revenue="SUM(*)")
  HashJoin(condition="o_custkey = c_custkey", type="inner")
    Gather(concurrent=true)
      LogicalView(tables="ORDERS_[0-7],LINEITEM_[0-7]", shardCount=8, sql="SELECT `ORDERS`.`o_custkey`, `LINEITEM`.`l_orderkey`, (`LINEITEM`.`l_extendedprice` * (? - `LINEITEM`.`l_discount`)) AS `x` FROM `ORDERS` AS `ORDERS` INNER JOIN `LINEITEM` AS `LINEITEM` ON (((`ORDERS`.`o_orderkey` = `LINEITEM`.`l_orderkey`) AND (`ORDERS`.`o_orderdate` < ?)) AND (`LINEITEM`.`l_shipdate` > ?))")
    Gather(concurrent=true)
      LogicalView(tables="CUSTOMER_[0-7]", shardCount=8, sql="SELECT `c_custkey` FROM `CUSTOMER` AS `CUSTOMER` WHERE (`c_mktsegment` = ?)")

如下图所示,LogicalView的SQL在执行时被下发给MySQL,而不能下推的部分(除LogicalView以外的算子)由PolarDB-X执行器进行计算,得到最终用户SQL需要的结果。

p162947.png

Volcano执行模型

PolarDB-X和很多数据库一样采用Volcano执行模型。所有算子都定义了open()next()等接口,算子根据执行计划组合成一棵算子树,上层算子通过调用下层算子的next()接口的取出结果,完成该算子的计算。最终顶层算子产生用户需要的结果并返回给客户端。

下面的例子中,假设HashJoin算子已经完成构建哈希表。当上层的Project算子请求数据时,HashJoin首先向下层Gather请求一批数据,然后查表得到JOIN结果,再返回给Project算子。

p162950.png

某些情况下,算子需要将数据全部读取并缓存在内存中,该过程被称为物化,例如,HashJoin算子需要读取内表的全部数据,并在内存中构建出哈希表。其他类似的算子还有HashAgg(聚合)、MemSort(排序)等。

由于内存资源是有限的,如果物化的数据量超出单条查询限制,或者使用的总内存超出PolarDB-X节点内存限制,将会引起内存不足(OUT_OF_MEMORY)报错。

并行查询

并行查询(Parallel Query) 指利用多线程并行执行用户的复杂查询。

说明 该功能仅在PolarDB-X标准版及企业版上提供,入门版由于硬件规格限制,不提供该项功能。

并行查询的执行计划相比原来有所改动。例如,还是以上面的查询为例,它的并行执行计划如下所示:


Gather(parallel=true)
  ParallelHashAgg(group="o_orderdate,o_shippriority,l_orderkey", revenue="SUM(*)")
    ParallelHashJoin(condition="o_custkey = c_custkey", type="inner")
      LogicalView(tables="ORDERS_[0-7],LINEITEM_[0-7]", shardCount=8, sql="SELECT `ORDERS`.`o_custkey`, `ORDERS`.`o_orderdate`, `ORDERS`.`o_shippriority`, `LINEITEM`.`l_orderkey`, (`LINEITEM`.`l_extendedprice` * (? - `LINEITEM`.`l_discount`)) AS `x` FROM `ORDERS` AS `ORDERS` INNER JOIN `LINEITEM` AS `LINEITEM` ON (((`ORDERS`.`o_orderkey` = `LINEITEM`.`l_orderkey`) AND (`ORDERS`.`o_orderdate` < ?)) AND (`LINEITEM`.`l_shipdate` > ?))", parallel=true)
      LogicalView(tables="CUSTOMER_[0-7]", shardCount=8, sql="SELECT `c_custkey` FROM `CUSTOMER` AS `CUSTOMER` WHERE (`c_mktsegment` = ?)", parallel=true)


可以看出,并行执行计划中Gather算子的位置被拉高了,这也意味者Gather下方的算子都会以并行方式执行,直到Gather时才被汇总成在一起。

执行时,Gather下方的算子会实例化出多个执行实例,分别对应一个并行度。并行度默认等于单台机器的核心数,标准版实例默认并行度为8,企业版实例默认并行度为16。

执行过程的诊断分析

除了上文提到的EXPLAIN指令,还有如下几个指令能帮助分析性能问题:

  • EXPLAIN ANALYZE指令用于分析PolarDB-X Server中各算子执行的性能指标。
  • EXPLAIN EXECUTE指令用于输出MySQL的EXPLAIN结果(并汇总输出)。

如下是以上文提到的查询为例,介绍如何分析一条查询的性能问题。

执行EXPLAIN ANALYZE得到如下结果(删除了一些无关的信息):

explain analyze select l_orderkey, sum(l_extendedprice *(1 - l_discount)) as revenue from CUSTOMER, ORDERS, LINEITEM where c_mktsegment = 'AUTOMOBILE' and c_custkey = o_custkey and l_orderkey = o_orderkey and o_orderdate < '1995-03-13' and l_shipdate > '1995-03-13' group by l_orderkey;
HashAgg(group="o_orderdate,o_shippriority,l_orderkey", revenue="SUM(*)")
... actual time = 23.916 + 0.000, actual rowcount = 11479, actual memory = 1048576, instances = 1 ...
  HashJoin(condition="o_custkey = c_custkey", type="inner")
  ... actual time = 0.290 + 23.584, actual rowcount = 30266, actual memory = 1048576, instances = 1 ...
    Gather(concurrent=true)
    ... actual time = 0.000 + 23.556, actual rowcount = 151186, actual memory = 0, instances = 1 ...
      LogicalView(tables="ORDERS_[0-7],LINEITEM_[0-7]", shardCount=8, sql="SELECT `ORDERS`.`o_custkey`, `ORDERS`.`o_orderdate`, `ORDERS`.`o_shippriority`, `LINEITEM`.`l_orderkey`, (`LINEITEM`.`l_extendedprice` * (? - `LINEITEM`.`l_discount`)) AS `x` FROM `ORDERS` AS `ORDERS` INNER JOIN `LINEITEM` AS `LINEITEM` ON (((`ORDERS`.`o_orderkey` = `LINEITEM`.`l_orderkey`) AND (`ORDERS`.`o_orderdate` < ?)) AND (`LINEITEM`.`l_shipdate` > ?))")
      ... actual time = 0.000 + 23.556, actual rowcount = 151186, actual memory = 0, instances = 4 ...
    Gather(concurrent=true)
    ... actual time = 0.000 + 0.282, actual rowcount = 29752, actual memory = 0, instances = 1 ...
      LogicalView(tables="CUSTOMER_[0-7]", shardCount=8, sql="SELECT `c_custkey` FROM `CUSTOMER` AS `CUSTOMER` WHERE (`c_mktsegment` = ?)")
      ... actual time = 0.000 + 0.282, actual rowcount = 29752, actual memory = 0, instances = 4 ...

p162952.png其中:

  • actual time表示实际执行耗时(其中包含子算子的耗时),加号(+)左边表示open(准备数据)耗时,右边表示next(输出数据)耗时。
  • actual rowcount表示输出的行数。
  • actual memory表示算子使用的内存空间大小(单位为Bytes)。
  • instances表示实例数,非并行查询时始终为1,对于并行算子每个并行度对应一个实例。如果实例数不等于1,actual time,actual rowcount,actual memory代表多个实例并行执行的总实际执行耗时、总输出行数、总内存使用量。


说明 当使用并行查询时,上述的算子耗时、输出行数等信息均为算子多个实例的累加。例如actual time = 20,instances = 8,表示该算子有8个实例并行执行,平均耗时为2.5s。

以上面的输出为例,解读如下:

  • HashAgg算子open耗时为23.916s,用于获取下层HashJoin的输出、并对输出的所有数据做分组和聚合。其中的23.601s都用在了获取了下层输出上,只有约0.3s用于分组聚合。
  • HashJoin算子open耗时0.290s,用于拉取右表(下方的Gather)数据并构建哈希表;next耗时23.584s,用于拉取左表数据以及查询哈希表得到JOIN结果。
  • Gather算子仅仅用于汇总多个结果集,通常代价很低。
  • 左侧(上方)的LogicalView拉取数据消耗了23.556s,可判断这里是查询的性能瓶颈。
  • 右侧(下方)的LogicalView拉取数据消耗了0.282s。

综上,性能瓶颈在左边的LogicalView上。从执行计划中可以看到,它是对ORDERS、LINEITEM的JOIN查询,这条查询MySQL执行速度较慢。

您可以通过如下EXPLAIN EXECUTE语句查看MySQL EXPLAIN结果:

p162660.jpeg

上图中,红色方框对应左边的LogicalView的下推查询,蓝色方框对应右边LogicalView的下推查询。

相关实践学习
快速体验PolarDB开源数据库
本实验环境已内置PostgreSQL数据库以及PolarDB开源数据库:PolarDB PostgreSQL版和PolarDB分布式版,支持一键拉起使用,方便各位开发者学习使用。
相关文章
|
5月前
|
SQL PHP
thinkphp之进阶sql语法,持续更新
thinkphp之进阶sql语法,持续更新
30 0
|
6月前
|
关系型数据库 分布式数据库 数据库
【PolarDB 开源】PolarDB 性能调优实录:提升数据库集群吞吐量的技巧
【5月更文挑战第22天】PolarDB 性能调优关键点包括硬件资源配置、数据库参数调整、索引优化、分区策略、事务优化及性能监控。创建高效索引如`CREATE INDEX idx_name ON table_name (column_name);`,根据业务场景选择分区方式,调整事务隔离级别以提升并发性能。监控 CPU、内存等指标,定期维护数据库,结合业务特点综合调优,从而提升数据库集群吞吐量。这些技巧有助于发挥PolarDB潜力,支持业务高效运行。
381 6
|
4月前
|
关系型数据库 分布式数据库 数据库
PolarDB产品使用问题之将RDS切换到PolarDB-X 2.0时,代码层的SQL该如何改动
PolarDB产品使用合集涵盖了从创建与管理、数据管理、性能优化与诊断、安全与合规到生态与集成、运维与支持等全方位的功能和服务,旨在帮助企业轻松构建高可用、高性能且易于管理的数据库环境,满足不同业务场景的需求。用户可以通过阿里云控制台、API、SDK等方式便捷地使用这些功能,实现数据库的高效运维与持续优化。
|
4月前
|
SQL 安全 Go
SQL注入不可怕,XSS也不难防!Python Web安全进阶教程,让你安心做开发!
【7月更文挑战第26天】在 Web 开发中, SQL 注入与 XSS 攻击常令人担忧, 但掌握正确防御策略可化解风险. 对抗 SQL 注入的核心是避免直接拼接用户输入至 SQL 语句. 使用 Python 的参数化查询 (如 sqlite3 库) 和 ORM 框架 (如 Django, SQLAlchemy) 可有效防范. 防范 XSS 攻击需严格过滤及转义用户输入. 利用 Django 模板引擎自动转义功能, 或手动转义及设置内容安全策略 (CSP) 来增强防护. 掌握这些技巧, 让你在 Python Web 开发中更加安心. 安全是个持续学习的过程, 不断提升才能有效保护应用.
53 1
|
5月前
|
SQL 存储 关系型数据库
MySQL数据库进阶第二篇(索引,SQL性能分析,使用规则)
MySQL数据库进阶第二篇(索引,SQL性能分析,使用规则)
|
5月前
|
SQL 存储 安全
SQL入门与进阶:数据库查询与管理的实用指南
一、引言 在数字化时代,数据库已经成为各行各业存储、管理和分析数据的关键基础设施
|
5月前
|
SQL XML Java
Mybatis进阶——动态SQL(1)
Mybatis进阶——动态SQL(1)
44 3
|
6月前
|
SQL 关系型数据库 MySQL
【MySQL进阶之路 | 基础篇】SQL概述
【MySQL进阶之路 | 基础篇】SQL概述
|
5月前
|
SQL 安全 数据库
SQL实践指南:从基础到进阶的数据库查询与管理
一、引言 在数据驱动的时代,数据库已成为各行各业不可或缺的一部分
|
6月前
|
SQL 存储 关系型数据库
MySQL进阶-增删查改(全网最详细sql教学)-3
MySQL进阶-增删查改(全网最详细sql教学)
40 0

相关产品

  • 云原生分布式数据库 PolarDB-X
  • 下一篇
    无影云桌面