PolarDB-X 1.0-用户指南-SQL调优指南-智能索引推荐

本文涉及的产品
云原生数据库 PolarDB 分布式版,标准版 2核8GB
简介: 索引优化通常需要依赖运维或开发人员对数据库引擎内部优化和执行原理的深入理解。为优化体验和降低操作门槛,PolarDB-X推出了基于代价优化器的索引推荐功能,可根据查询语句分析并推荐索引,帮助您降低查询耗时,提升数据库性能。

索引优化通常需要依赖运维或开发人员对数据库引擎内部优化和执行原理的深入理解。为优化体验和降低操作门槛,PolarDB-X推出了基于代价优化器的索引推荐功能,可根据查询语句分析并推荐索引,帮助您降低查询耗时,提升数据库性能。

注意事项

索引推荐功能仅针对您当前指定的SQL查询语句进行分析与推荐。在根据推荐的信息创建索引前,您需要评估创建该索引对其它查询的影响。

环境说明

TPC-H是业界常用的基准测试方法,由TPC委员会制定发布,用于评测数据库的分析型查询能力。TPC-H基准测试方法包含8张数据表、22条复杂的SQL查询(即Q1~Q22)。下图为执行TPC-H中的Q17(小订单收入查询)的返回信息,可查看到执行该查询语句消耗的时间为28.76秒。本文将通过智能索引推荐功能,优化该查询语句的执行效率。


说明 关于TCP-H中查询语句的详细介绍,请参见TPC-H的SQL语句分析

本文的TPC-H的实现基于TPC-H的基准测试,并不能与已发布的TPC-H基准测试结果相比较,本文中的测试并不符合TPC-H基准测试的所有要求。

图 1. 智能索引优化前p162768.png

步骤一:查询智能索引推荐信息

如需查询某个查询语句的智能索引推荐信息,您只需在该查询语句前增加EXPLAIN ADVISOR命令,示例如下:


EXPLAIN ADVISOR
SELECT sum(l_extendedprice) / 7.0 AS avg_yearly
FROM lineitem,
     part
WHERE p_partkey = l_partkey
  AND p_brand = 'Brand#23'
  AND p_container = 'MED BOX'
  AND l_quantity <
    (SELECT 0.2 * avg(`l_quantity`)
     FROM lineitem
     WHERE l_partkey = p_partkey);

执行上述命令后,PolarDB-X将返回推荐的索引创建语句、添加索引前后的代价等信息,详细的返回信息及其注释如下所示:


说明

  • 本案例中,预计磁盘I/O提升百分比为3024.7%,表明使用推荐的索引将带来较大的收益。
  • PolarDB-X无法推荐索引时,返回信息中会建议您在业务低峰期,对目标表执行Analyze Table命令刷新统计信息(该操作会消耗较大的I/O资源)。当统计信息更新后,再次执行索引推荐可获得更准确的索引。


IMPROVE_VALUE: 2465.3%        # 预计综合代价提升百分比
  IMPROVE_CPU: 59377.4%       # 预计CPU提升百分比
  IMPROVE_MEM: 0.4%           # 预计内存提升百分比
   IMPROVE_IO: 3024.7%        # 预计磁盘I/O提升百分比
  IMPROVE_NET: 2011.1%        # 预计网络传输提升百分比
 BEFORE_VALUE: 4.711359845E8  # 添加索引前综合代价值
   BEFORE_CPU: 1.19405577E7   # 添加索引前CPU估算值
   BEFORE_MEM: 426811.2       # 添加索引前内存消耗估算值
    BEFORE_IO: 44339          # 添加索引前磁盘I/O估算值
   BEFORE_NET: 47.5           # 添加索引前网络传输估算值
  AFTER_VALUE: 1.83655008E7   # 添加索引后综合代价值
    AFTER_CPU: 20075.8        # 添加索引后CPU估算值
    AFTER_MEM: 425016         # 添加索引后内存消耗估算值
     AFTER_IO: 1419           # 添加索引后磁盘I/O估算值
    AFTER_NET: 2.2            # 添加索引后网络传输估算值
 ADVISE_INDEX: ALTER TABLE `lineitem` ADD  INDEX `__advise_index_lineiteml_partkey`(`l_partkey`);
/* ADVISE_INDEX中的内容为推荐的索引创建语句 */
     NEW_PLAN:                # 添加索引后预计执行计划
Project(avg_yearly="$f0 / ?0")
  HashAgg($f0="SUM(l_extendedprice)")
    Filter(condition="l_quantity < $16 * f17w0$o0")
      SortWindow(p_partkey="p_partkey", l_partkey="l_partkey", l_quantity="l_quantity", l_extendedprice="l_extendedprice", $16="$16", f5w0$o0="window#0AVG($2)", Reference Windows="window#0=window(partition {1} order by [] range between UNBOUNDED PRECEDING and UNBOUNDED PRECEDING aggs [AVG($2)])")
        MemSort(sort="l_partkey ASC")
          BKAJoin(condition="l_partkey = p_partkey", type="inner")
            Gather(concurrent=true)
              LogicalView(tables="[0000,0001].part", shardCount=2, sql="SELECT `p_partkey` FROM `part` AS `part` WHERE ((`p_brand` = ?) AND (`p_container` = ?))")
            Gather(concurrent=true)
              LogicalView(tables="[0000,0001].lineitem", shardCount=2, sql="SELECT `l_partkey`, `l_quantity`, `l_extendedprice`, ? AS `$16` FROM `lineitem` AS `lineitem` WHERE (`l_partkey` IN (...))")
         INFO: LOCAL_INDEX    # 其它信息

步骤二:根据推荐信息创建索引

  1. 评估创建该索引带来的收益,然后根据返回结果ADVISE_INDEX中的SQL语句创建索引。
ALTER TABLE `lineitem` ADD  INDEX `__advise_index_lineiteml_partkey`(`l_partkey`);
  1. 再次执行TPC-H中的Q17(小订单收入查询),耗时减少至1.41秒,查询效率得到大幅提升。图 2. 智能索引优化后p162950.png
相关实践学习
快速体验PolarDB开源数据库
本实验环境已内置PostgreSQL数据库以及PolarDB开源数据库:PolarDB PostgreSQL版和PolarDB分布式版,支持一键拉起使用,方便各位开发者学习使用。
相关文章
|
5月前
|
存储 缓存 负载均衡
【PolarDB-X 技术揭秘】Lizard B+tree:揭秘分布式数据库索引优化的终极奥秘!
【8月更文挑战第25天】PolarDB-X是阿里云的一款分布式数据库产品,其核心组件Lizard B+tree针对分布式环境优化,解决了传统B+tree面临的数据分片与跨节点查询等问题。Lizard B+tree通过一致性哈希实现数据分片,确保分布式一致性;智能分区实现了负载均衡;高效的搜索算法与缓存机制降低了查询延迟;副本机制确保了系统的高可用性。此外,PolarDB-X通过自适应分支因子、缓存优化、异步写入、数据压缩和智能分片等策略进一步提升了Lizard B+tree的性能,使其能够在分布式环境下提供高性能的索引服务。这些优化不仅提高了查询速度,还确保了系统的稳定性和可靠性。
125 5
|
6月前
|
SQL 关系型数据库 分布式数据库
PolarDB产品使用问题之相同的SQL语句在不同时间执行EXPLAIN计划显示出不同的索引类型,是什么原因
PolarDB产品使用合集涵盖了从创建与管理、数据管理、性能优化与诊断、安全与合规到生态与集成、运维与支持等全方位的功能和服务,旨在帮助企业轻松构建高可用、高性能且易于管理的数据库环境,满足不同业务场景的需求。用户可以通过阿里云控制台、API、SDK等方式便捷地使用这些功能,实现数据库的高效运维与持续优化。
PolarDB产品使用问题之相同的SQL语句在不同时间执行EXPLAIN计划显示出不同的索引类型,是什么原因
|
6月前
|
SQL 关系型数据库 分布式数据库
PolarDB产品使用问题之遇到慢SQL问题,该如何解决
PolarDB产品使用合集涵盖了从创建与管理、数据管理、性能优化与诊断、安全与合规到生态与集成、运维与支持等全方位的功能和服务,旨在帮助企业轻松构建高可用、高性能且易于管理的数据库环境,满足不同业务场景的需求。用户可以通过阿里云控制台、API、SDK等方式便捷地使用这些功能,实现数据库的高效运维与持续优化。
|
5月前
|
C# UED 定位技术
WPF控件大全:初学者必读,掌握控件使用技巧,让你的应用程序更上一层楼!
【8月更文挑战第31天】在WPF应用程序开发中,控件是实现用户界面交互的关键元素。WPF提供了丰富的控件库,包括基础控件(如`Button`、`TextBox`)、布局控件(如`StackPanel`、`Grid`)、数据绑定控件(如`ListBox`、`DataGrid`)等。本文将介绍这些控件的基本分类及使用技巧,并通过示例代码展示如何在项目中应用。合理选择控件并利用布局控件和数据绑定功能,可以提升用户体验和程序性能。
146 0
|
6月前
|
SQL 关系型数据库 分布式数据库
PolarDB产品使用问题之sql运行报错是神么原因
PolarDB产品使用合集涵盖了从创建与管理、数据管理、性能优化与诊断、安全与合规到生态与集成、运维与支持等全方位的功能和服务,旨在帮助企业轻松构建高可用、高性能且易于管理的数据库环境,满足不同业务场景的需求。用户可以通过阿里云控制台、API、SDK等方式便捷地使用这些功能,实现数据库的高效运维与持续优化。
|
6月前
|
SQL 关系型数据库 Serverless
PolarDB产品使用问题之如何控制队列中排队的SQL的等待时间
PolarDB产品使用合集涵盖了从创建与管理、数据管理、性能优化与诊断、安全与合规到生态与集成、运维与支持等全方位的功能和服务,旨在帮助企业轻松构建高可用、高性能且易于管理的数据库环境,满足不同业务场景的需求。用户可以通过阿里云控制台、API、SDK等方式便捷地使用这些功能,实现数据库的高效运维与持续优化。
|
6月前
|
SQL 关系型数据库 分布式数据库
PolarDB产品使用问题之出现部分SQL抛出7543错误,该如何解决
PolarDB产品使用合集涵盖了从创建与管理、数据管理、性能优化与诊断、安全与合规到生态与集成、运维与支持等全方位的功能和服务,旨在帮助企业轻松构建高可用、高性能且易于管理的数据库环境,满足不同业务场景的需求。用户可以通过阿里云控制台、API、SDK等方式便捷地使用这些功能,实现数据库的高效运维与持续优化。
|
6月前
|
SQL 缓存 关系型数据库
PolarDB产品使用问题之SQL语句是否可以参数化
PolarDB产品使用合集涵盖了从创建与管理、数据管理、性能优化与诊断、安全与合规到生态与集成、运维与支持等全方位的功能和服务,旨在帮助企业轻松构建高可用、高性能且易于管理的数据库环境,满足不同业务场景的需求。用户可以通过阿里云控制台、API、SDK等方式便捷地使用这些功能,实现数据库的高效运维与持续优化。
|
6月前
|
关系型数据库 分布式数据库 数据库
PolarDB产品使用问题之将RDS切换到PolarDB-X 2.0时,代码层的SQL该如何改动
PolarDB产品使用合集涵盖了从创建与管理、数据管理、性能优化与诊断、安全与合规到生态与集成、运维与支持等全方位的功能和服务,旨在帮助企业轻松构建高可用、高性能且易于管理的数据库环境,满足不同业务场景的需求。用户可以通过阿里云控制台、API、SDK等方式便捷地使用这些功能,实现数据库的高效运维与持续优化。
|
6月前
|
SQL 关系型数据库 分布式数据库
PolarDB产品使用问题之如何实现在线上加索引,并且不会锁表
PolarDB产品使用合集涵盖了从创建与管理、数据管理、性能优化与诊断、安全与合规到生态与集成、运维与支持等全方位的功能和服务,旨在帮助企业轻松构建高可用、高性能且易于管理的数据库环境,满足不同业务场景的需求。用户可以通过阿里云控制台、API、SDK等方式便捷地使用这些功能,实现数据库的高效运维与持续优化。

相关产品

  • 云原生分布式数据库 PolarDB-X