开发指南—DAL语句—EXPLAIN

简介: 该语句用于解释SQL语句的执行计划,包括SELECT、DELETE、INSERT、REPLACE或UPDATE语句。

语法

获取SQL计划信息:


EXPLAIN
{LOGICALVIEW | LOGIC | SIMPLE | DETAIL | EXECUTE | PHYSICAL | OPTIMIZER | SHARDING
 | COST | ANALYZE | BASELINE | JSON_PLAN | ADVISOR} 
 {SELECT statement | DELETE statement | INSERT statement | REPLACE statement| UPDATE statement}

示例

  • explain语句:展示基本的SQL执行计划,该执行计划是算子组成,主要体现SQL在CN上的整个执行过程。
mysql> explain select count(*) from lineitem group by L_ORDERKEY;
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| LOGICAL EXECUTIONPLAN                                                                                                                                                              |
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Project(count(*)="count(*)")                                                                                                                                                       |
|   HashAgg(group="L_ORDERKEY", count(*)="SUM(count(*))")                                                                                                                            |
|     Gather(concurrent=true)                                                                                                                                                        |
|       LogicalView(tables="[000000-000003].lineitem_[00-15]", shardCount=16, sql="SELECT `L_ORDERKEY`, COUNT(*) AS `count(*)` FROM `lineitem` AS `lineitem` GROUP BY `L_ORDERKEY`") |
| HitCache:false                                                                                                                                                                     |                                                                                                                                                               |
| TemplateId: 5819c807                                                                                                                                                               |
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
  • 其中,HitCache标记该查询是否命中PlanCache,取值为false or trueTemplateId表示对该计划的标识,具有全局唯一性。
  • explain logicalview语句:展示LogicalView所表示的下推SQL在DN上的执行计划。
mysql> explain LOGICALVIEW select  mysql> explain select logialview count(*) from lineitem group by L_ORDERKEY;
+----------------------------------------------------------+
| LOGICAL EXECUTIONPLAN                                    |
+----------------------------------------------------------+
| Project(count(*)="count(*)")                             |
|   HashAgg(group="L_ORDERKEY", count(*)="SUM(count(*))")  |
|     Gather(concurrent=true)                              |
|       LogicalView                                        |
|         MysqlAgg(group="L_ORDERKEY", count(*)="COUNT()") |
|           MysqlTableScan(name=[ads, lineitem])           |
| HitCache:true                                            |
| Source:PLAN_CACHE                                        |
| TemplateId: 5819c807
  • explain execute语句:表示下推SQL在mysql的执行情况,这个语句和mysql的explain语句同义。通过该语句可以查看下推SQL在DN上有没有使用索引,有没有做全表扫描。
mysql> explain EXECUTE  select  count(*) from lineitem group by L_ORDERKEY;
+----+-------------+----------+------------+-------+---------------+---------+---------+-----+------+----------+----------------------------------------------+
| id | select_type | table    | partitions | type  | possible_keys | key     | key_len | ref | rows | filtered | Extra                                        |
+----+-------------+----------+------------+-------+---------------+---------+---------+-----+------+----------+----------------------------------------------+
| 1  | SIMPLE      | lineitem | NULL       | index | PRIMARY       | PRIMARY | 8       | NULL | 1    | 100      | Using index; Using temporary; Using filesort |
+----+-------------+----------+------------+-------+---------------+---------+---------+-----+------+----------+----------------------------------------------+
1 row in set (0.24 sec)
  • explain sharding语句:展示当前查询在DN上扫描的物理分片情况。
mysql> explain sharding  select  count(*) from lineitem group by L_ORDERKEY;
+---------------+----------------------------------+-------------+-----------+-----------+
| LOGICAL_TABLE | SHARDING                         | SHARD_COUNT | BROADCAST | CONDITION |
+---------------+----------------------------------+-------------+-----------+-----------+
| lineitem      | [000000-000003].lineitem_[00-15] | 16          | false     |           |
+---------------+----------------------------------+-------------+-----------+-----------+
1 row in set (0.04 sec)
  • explain cost语句:相对于explain语句,除了展示执行计划以外,还会显示各个算子基于统计信息估算的代价,以及这条查询被优化器识别的WORKLOAD。
mysql> explain COST  select  count(*) from lineitem group by L_ORDERKEY;
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| LOGICAL EXECUTIONPLAN                                                                                                                                                                                                                                                                                            |
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Project(count(*)="count(*)"): rowcount = 2508.0, cumulative cost = value = 2.4867663E7, cpu = 112574.0, memory = 88984.0, io = 201.0, net = 4.75, id = 182                                                                                                                                                       |
|   HashAgg(group="L_ORDERKEY", count(*)="SUM(count(*))"): rowcount = 2508.0, cumulative cost = value = 2.4867662E7, cpu = 112573.0, memory = 88984.0, io = 201.0, net = 4.75, id = 180                                                                                                                            |
|     Gather(concurrent=true): rowcount = 2508.0, cumulative cost = value = 2.4860069E7, cpu = 105039.0, memory = 29796.0, io = 201.0, net = 4.75, id = 178                                                                                                                                                        |
|       LogicalView(tables="[000000-000003].lineitem_[00-15]", shardCount=16, sql="SELECT `L_ORDERKEY`, COUNT(*) AS `count(*)` FROM `lineitem` AS `lineitem` GROUP BY `L_ORDERKEY`"): rowcount = 2508.0, cumulative cost = value = 2.4860068E7, cpu = 105038.0, memory = 29796.0, io = 201.0, net = 4.75, id = 109 |
| HitCache:true                                                                                                                                                                                                                                                                                                    |
| Source:PLAN_CACHE                                                                                                                                                                                                                                                                                                |
| WorkloadType: TP                                                                                                                                                                                                                                                                                                 |
| TemplateId: 5819c807
  • explain analyze语句:相对于explain cost语句,除了显示各个算子基于统计信息估算的代价以外,该语句可以收集真实运行过程中算子输出的rowCount等信息。
mysql> explain ANALYZE  select  count(*) from lineitem group by L_ORDERKEY;
+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| LOGICAL EXECUTIONPLAN                                                                                                                                                                                                                                                                                                                                                                                    |
+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Project(count(*)="count(*)"): rowcount = 2508.0, cumulative cost = value = 2.4867663E7, cpu = 112574.0, memory = 88984.0, io = 201.0, net = 4.75, actual time = 0.001 + 0.000, actual rowcount = 2506, actual memory = 0, instances = 1, id = 182                                                                                                                                                        |
|   HashAgg(group="L_ORDERKEY", count(*)="SUM(count(*))"): rowcount = 2508.0, cumulative cost = value = 2.4867662E7, cpu = 112573.0, memory = 88984.0, io = 201.0, net = 4.75, actual time = 0.000 + 0.000, actual rowcount = 2506, actual memory = 0, instances = 1, id = 180                                                                                                                             |
|     Gather(concurrent=true): rowcount = 2508.0, cumulative cost = value = 2.4860069E7, cpu = 105039.0, memory = 29796.0, io = 201.0, net = 4.75, actual time = 0.000 + 0.000, actual rowcount = 0, actual memory = 0, instances = 0, id = 178                                                                                                                                                            |
|       LogicalView(tables="[000000-000003].lineitem_[00-15]", shardCount=16, sql="SELECT `L_ORDERKEY`, COUNT(*) AS `count(*)` FROM `lineitem` AS `lineitem` GROUP BY `L_ORDERKEY`"): rowcount = 2508.0, cumulative cost = value = 2.4860068E7, cpu = 105038.0, memory = 29796.0, io = 201.0, net = 4.75, actual time = 0.030 + 0.025, actual rowcount = 10000, actual memory = 0, instances = 0, id = 109 |
| HitCache:true                                                                                                                                                                                                                                                                                                                                                                                            |
| Source:PLAN_CACHE                                                                                                                                                                                                                                                                                                                                                                                        |
| TemplateId: 5819c807                                                                                                                                                                                                                                                                                                                                                                                     |
+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
7 rows in set (1.08 sec)
  • explain physical语句:展示查询在运行过程中执行模式、各个执行片段(Fragment)的依赖关系和并行度。该查询被识别为单机单线程计划模式(TP_LOCAL),执行计划被分为三个片段Fragment-0、Fragment-1和Fragment-2,先做预聚合再做最终的聚合计算,每个片段的执行度可以不同。
mysql> explain physical   select  count(*) from lineitem group by L_ORDERKEY;
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| PLAN                                                                                                                                                                           |
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| ExecutorMode: TP_LOCAL                                                                                                                                                         |
| Fragment 0 dependency: [] parallelism: 4                                                                                                                                       |
| Gather(concurrent=true)                                                                                                                                                        |
|   LogicalView(tables="[000000-000003].lineitem_[00-15]", shardCount=16, sql="SELECT `L_ORDERKEY`, COUNT(*) AS `count(*)` FROM `lineitem` AS `lineitem` GROUP BY `L_ORDERKEY`") |
| Fragment 1 dependency: [] parallelism: 8                                                                                                                                       |
| LocalBuffer                                                                                                                                                                    |
|   RemoteSource(sourceFragmentIds=[0], type=RecordType(INTEGER L_ORDERKEY, BIGINT count(*)))                                                                                    |
| Fragment 2 dependency: [0, 1] parallelism: 8                                                                                                                                   |
| Project(count(*)="count(*)")                                                                                                                                                   |
|   HashAgg(group="L_ORDERKEY", count(*)="SUM(count(*))")                                                                                                                        |
|     RemoteSource(sourceFragmentIds=[1], type=RecordType(INTEGER L_ORDERKEY, BIGINT count(*)))                                                                                  |
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
11 rows in set (0.10 sec)
  • explain advisor语句:主要是会基于统计信息,分析当前查询的执行计划,给用户推荐可以加速查询的全局二级索引。
mysql> explain advisor   select  count(*) from lineitem group by L_ORDERKEY \G;
*************************** 1. row ***************************
IMPROVE_VALUE: 4.4%
  IMPROVE_CPU: 340.8%
  IMPROVE_MEM: 0.0%
   IMPROVE_IO: 1910.0%
  IMPROVE_NET: 0.0%
 BEFORE_VALUE: 2.48676627E7
   BEFORE_CPU: 112573.7
   BEFORE_MEM: 88983.8
    BEFORE_IO: 201
   BEFORE_NET: 4.7
  AFTER_VALUE: 2.38256249E7
    AFTER_CPU: 25536
    AFTER_MEM: 88983.8
     AFTER_IO: 10
    AFTER_NET: 4.7
 ADVISE_INDEX: ALTER TABLE `ads`.`lineitem` ADD GLOBAL INDEX `__advise_index_gsi_lineitem_L_ORDERKEY`(`L_ORDERKEY`) DBPARTITION BY HASH(`L_ORDERKEY`) TBPARTITION BY HASH(`L_ORDERKEY`) TBPARTITIONS 4;
     NEW_PLAN:
Project(count(*)="count(*)")
  HashAgg(group="L_ORDERKEY", count(*)="SUM(count(*))")
    Gather(concurrent=true)
      IndexScan(tables="[000000-000003].lineitem__what_if_gsi_L_ORDERKEY_[00-15]", shardCount=16, sql="SELECT `L_ORDERKEY`, COUNT(*) AS `count(*)` FROM `lineitem__what_if_gsi_L_ORDERKEY` AS `lineitem__what_if_gsi_L_ORDERKEY` GROUP BY `L_ORDERKEY`")
         INFO: GLOBAL_INDEX
1 row in set (0.13 sec)
相关文章
|
资源调度 前端开发 Shell
[docker] DevContainer高效开发(第二篇):前端开发体验
上面的配置只是最基本的配置,大部分情况我们是需要自定义配置,让容器更符合我们的需求。自定义配置就需要用到 Dockerfile,这个文件是 docker 的配置文件,可以在里面安装软件,配置环境等等。Dockerfile 的语法可以参考 官方文档。然后根据自己的需求编写 Dockerfile# 设置变量,由 .devcontainer.json 中的 args 传入# 指定 node 版本# 设置编码# 设置工作目录# 挂载 volume# 设置 bash 为默认 shell。
483 0
|
前端开发 JavaScript Java
计算机java项目|springboot基于spring框架的电影订票系统
计算机java项目|springboot基于spring框架的电影订票系统
269 0
|
11月前
|
运维 测试技术 API
(2)深度对比:Apipost vs Apifox (2)文档功能
本文深入对比Apipost和Apifox的API文档管理功能。两者都能生成精美且详细的API文档,涵盖响应体、请求示例等关键信息。Apipost界面设计高效简洁,文档查看与编辑无需频繁切换页面,整体体验流畅;而Apifox功能全面但稍显复杂。选择工具应根据个人习惯和团队需求决定。后续还将对比两者的更多功能,如Mock数据、性能测试及团队协作等。
|
分布式计算 DataWorks 搜索推荐
聊聊DataWorks这个大数据开发治理平台
聊聊DataWorks这个大数据开发治理平台
343 2
|
机器学习/深度学习 数据采集 算法
Python机器学习:Scikit-learn库的高效使用技巧
【10月更文挑战第28天】Scikit-learn 是 Python 中最受欢迎的机器学习库之一,以其简洁的 API、丰富的算法和良好的文档支持而受到开发者喜爱。本文介绍了 Scikit-learn 的高效使用技巧,包括数据预处理(如使用 Pipeline 和 ColumnTransformer)、模型选择与评估(如交叉验证和 GridSearchCV)以及模型持久化(如使用 joblib)。通过这些技巧,你可以在机器学习项目中事半功倍。
318 3
|
XML JavaScript 前端开发
SVG学习
【10月更文挑战第1天】
263 3
|
消息中间件 Java Kafka
Spring Boot与模板引擎:整合Thymeleaf和FreeMarker,打造现代化Web应用
【8月更文挑战第29天】这段内容介绍了在分布式系统中起到异步通信与解耦作用的消息队列,并详细探讨了三种流行的消息队列产品:RabbitMQ、RocketMQ 和 Kafka。RabbitMQ 是一个基于 AMQP 协议的开源消息队列系统,支持多种消息模型,具有高可靠性及稳定性;RocketMQ 则是由阿里巴巴开源的高性能分布式消息队列,支持事务消息等多种特性;而 Kafka 是 LinkedIn 开源的分布式流处理平台,以其高吞吐量和良好的可扩展性著称。文中还提供了使用这三种消息队列产品的示例代码。
159 0
|
运维 搜索推荐 调度
Ha3搜索引擎简介
Ha3是阿里巴巴搜索团队开发的搜索引擎平台,它为阿里集团包括淘宝、天猫在内的核心业务提供搜索服务支持。
25191 1
|
Android开发
Android面试高频知识点(1) 图解 Android 事件分发机制
在Android开发中,事件分发机制是一块Android比较重要的知识体系,了解并熟悉整套的分发机制有助于更好的分析各种点击滑动失效问题,更好去扩展控件的事件功能和开发自定义控件,同时事件分发机制也是Android面试必问考点之一,如果你能把下面的一些事件分发图当场画出来肯定加分不少。废话不多说,总结一句:事件分发机制很重要。
474 9
|
存储 Kubernetes Go
Go语言项目组织架构
Go语言项目组织架构