带你读《软件定义网络之旅:构建更智能、更快速、更灵活的未来网络》第二章将现代电信网络从全IP 网转变为网络云2.5(四)

简介: 带你读《软件定义网络之旅:构建更智能、更快速、更灵活的未来网络》第二章将现代电信网络从全IP 网转变为网络云2.5

2.5.10    网络核心

13章更加详细地描述了 OSI层模型中针对光纤(第一层)和数据分组(第二层和第三层)的核心网络。光纤层提供远程中心局之间的光纤互连,这需要电光转换、光放大、传输控制以及多个信号的多路复用/解复用。分组核心网充当将外围连接在一起的骨干网,它支持分组流量几乎在任何地方入网,并经济地将分组转发到预定目的地。


用于现代光纤通信的电光设备可分为两种基本类型:可重构光分插复用器ROADMReconfigurableOpticalAdd/DropMultiplexer和光放大器OAOpticalAmplifier。前者通常放置在运营商中央办公室,以支持增加和取消流量(类似于高速公路的驶入驶出匝道;后者负责增加光信号的强度,使其可以继续传输到目的地。


现代高容量光纤系统采用称为密集波分复用(DWDMDense Wavelength Division Multiplexing技术,通过将多个独立高速率(当前速率为 100Gbit/s200Gbit/s,但很快将达到 400Gbit/s)光信号整合到同一光纤上,并为每个信号赋予唯一的波长。ROADM通过提供在每个节点添加或删除特定波长的能力来增加此功能。这形成了支持大量位置在彼此之间发送光学波长而无须单独 光纤光缆的光网络。


随着SDN的出现,光层正在以两种关键方式深入发展功能分解以及与分组层相结合实现传输资源的全局优化。全局优化可采用 SDN来完成。


集中式控制器跟踪所有波长入口点和出口点,并使用路由优化算法和任何每波长约束条件将其配置在各个网络构成部分上。约束条件的实例包括最大往返延迟和多波长分集(当两个或更多波长需要有不重合的独立路径时,不重合的独立路径使这些波长不可能同时失效


分组核心是网络核心的组成部分。分组核心将入口分组聚合到网络中不同点的公共链路上,网络核心的作用是从边缘获取分组流,并利用共享光传输层将其发送到指定目的地。由于服务提供商还提供诸如消费互联网、商业互联网与其他互联网公司(称为对等的连接、私人商业网络(称为虚拟专用网)与云数据中心的连接等诸多IP服务,网络核心还需要执行批量分组传输的任务,尽可能以服务不可知的方式提供。考虑到需要支持的不同类型 IP服务,MPLS(多协议标签交换)可用作分组传输的简化方法。MPLS   在每个数据分组前使用一个短报头,这支持任何一方的核心路由器以快速高效的方式来处理和转发数据分组。标签部分是这两台路由器的已知地址(它在本 具有极其重要的意义,它支持MPLS标签地址空间在每条链路上进行重用。报头的其他部分含链路拥塞时使用的流量优先级 [ 也称为服务质量(QoS] 信息。


为了对流量进行管理,流量工程(TE)技术从每台核心路由器到其他核心路由器创建一条或多条隧道。多条隧道用于支持不同端到端路径更加高效地利用核心服务器容量。入网数据分组被映射到匹配其目的地的隧道。中间核心路由器仅基于隧道映射来转发MPLS分组。在链路出现故障的情况下,两种机制皆可发挥作用。首先,每条链路都有一条到其相邻核心路由器的预定义备 份重路由路径。其次,当可达性信息通过网络进行传播时,所有隧道都会重新确定其路径,阻止 它们使用当前处于故障状态的链路。这种全局修复充分考虑到提高核心容量的更好的全局优化。SDN,可以在 SDN控制器中累积所有全局流量信息和链路状态,以实现更好的全局优化, 它支持对网络进行深度调整。选择使用分布式和集中式控制混合的方法可以实现初始恢复速度    和最大效率之间的最佳平衡。短期内,业界正在引入一种称为分段路由(SRSegmentRouting) 的新方法。SR    支持简化网络,因为它可以对多种控制平面协议进行合并。本质上,分段路由通过支持每个分组携带路径路由信息来发挥作用。因此,在起始点,可以预先确定部分中间跳或    全部中间跳。因此,SR取代了对诸如基于流量工程扩展的资源预留协议(RSVP-TEResourceReservationProtocolforTrafficEngineering)等独立协议的需求,以执行用于标签分发的快速重路由(FRRFastReroute)本地修复和标签分发协议(LDPLabelDistributionProtocol)。


    网络核心的最后一个构成部分是路由反射器RRRouteReflector。连接到核心的所有边缘设备都需要具备相互通信服务的可达性。这可通过采用边界网关协议(BGP)来完成。但是,如何让数百台边缘路由器之间相互交换控制平面信息呢?通过使用一种称为路由反射器的聚合和分发节点。网络中的每台边缘路由器都与一对路由反射器建立连接。在规模方面,可以针对不同服务区域或地理区域部署多对路由反射器。其中每台路由反射器都从其服务的边缘路由器处接收BGP消息,将消息复制并分发给其他边缘路由器。这可以减少边缘和核心路由器的工作量,从而实现控制和数据平面处理功能的扩展和分离。

相关文章
|
3月前
|
负载均衡 网络协议 网络性能优化
动态IP代理技术详解及网络性能优化
动态IP代理技术通过灵活更换IP地址,广泛应用于数据采集、网络安全测试等领域。本文详细解析其工作原理,涵盖HTTP、SOCKS代理及代理池的实现方法,并提供代码示例。同时探讨配置动态代理IP后如何通过智能调度、负载均衡、优化协议选择等方式提升网络性能,确保高效稳定的网络访问。
378 2
|
7天前
|
云安全 人工智能 安全
构建云上安全共同体 | 阿里云亮相2024年(第十三届)电信和互联网行业网络安全年会
构建云上安全共同体 | 阿里云亮相2024年(第十三届)电信和互联网行业网络安全年会
|
22天前
|
安全 网络安全 UED
为何长效代理静态IP是网络管理的关键要素
在信息化时代,静态长效IP代理对网络管理至关重要。它能提升网络服务质量,确保远程办公、视频会议等应用的稳定性和连续性;减少延迟和网络拥堵,加快数据传输;提高网络安全,便于设置访问权限,防止未授权访问。91HTTP高质量代理IP服务商助力高效信息获取。
46 23
|
5天前
|
人工智能 运维 API
云栖大会 | Terraform从入门到实践:快速构建你的第一张业务网络
云栖大会 | Terraform从入门到实践:快速构建你的第一张业务网络
|
7天前
|
云安全 人工智能 安全
阿里云网络安全体系解析:如何构建数字时代的"安全盾牌"
在数字经济时代,阿里云作为亚太地区最大的云服务提供商,构建了行业领先的网络安全体系。本文解析其网络安全架构的三大核心维度:基础架构安全、核心技术防护和安全管理体系。通过技术创新与体系化防御,阿里云为企业数字化转型提供坚实的安全屏障,确保数据安全与业务连续性。案例显示,某金融客户借助阿里云成功拦截3200万次攻击,降低运维成本40%,响应时间缩短至8分钟。未来,阿里云将继续推进自适应安全架构,助力企业提升核心竞争力。
|
1月前
|
Shell 网络架构 计算机视觉
YOLOv11改进策略【模型轻量化】| ShufflenetV2,通过通道划分构建高效网络
YOLOv11改进策略【模型轻量化】| ShufflenetV2,通过通道划分构建高效网络
67 14
|
25天前
|
Shell 网络架构 计算机视觉
RT-DETR改进策略【模型轻量化】| ShufflenetV2,通过通道划分构建高效网络
RT-DETR改进策略【模型轻量化】| ShufflenetV2,通过通道划分构建高效网络
34 5
|
2月前
|
网络协议 Unix Linux
深入解析:Linux网络配置工具ifconfig与ip命令的全面对比
虽然 `ifconfig`作为一个经典的网络配置工具,简单易用,但其功能已经不能满足现代网络配置的需求。相比之下,`ip`命令不仅功能全面,而且提供了一致且简洁的语法,适用于各种网络配置场景。因此,在实际使用中,推荐逐步过渡到 `ip`命令,以更好地适应现代网络管理需求。
51 11
|
2月前
|
机器学习/深度学习 边缘计算 运维
机器学习在网络安全中的防护:智能化的安全屏障
机器学习在网络安全中的防护:智能化的安全屏障
224 15
|
2月前
|
运维 监控 Cloud Native
构建深度可观测、可集成的网络智能运维平台
本文介绍了构建深度可观测、可集成的网络智能运维平台(简称NIS),旨在解决云上网络运维面临的复杂挑战。内容涵盖云网络运维的三大难题、打造云原生AIOps工具集的解决思路、可观测性对业务稳定的重要性,以及产品发布的亮点,包括流量分析NPM、网络架构巡检和自动化运维OpenAPI,助力客户实现自助运维与优化。

热门文章

最新文章