数据结构——顺序栈

简介: 数据结构——顺序栈

  • 定义:只能在表的一端(栈顶)进行插入和删除运算的线性表
  • 逻辑结构:一对一关系
  • 存储结构

    • 顺序栈
    • 链栈
  • 运算规则:只能在栈顶运算,且访问结点时依照后进先出(LIFO)或先进后出(FILO)的原则
  • 实现方式

    • 入栈
    • 出栈
    • 读栈顶元素值
    • 建栈
    • 判断栈空
    • 判断栈慢
    • 清空栈
    • 销毁栈

栈的表示和操作的实现

在这里插入图片描述在这里插入图片描述
在这里插入图片描述

顺序栈的C++代码实现

#include<iostream>
using namespace std;

#define OVERFLOW -2 
#define OK 1
#define NULL 0
#define ERROR -1

#define MAXSIZE 100  // 最大空间

typedef int SElemType;
typedef int Status;

typedef struct {
    SElemType* base;
    SElemType* top;
    int stacksize;
}SqStack;

// 顺序栈初始化
Status InitStack(SqStack& S) {
    S.base = new SElemType[MAXSIZE];
    if (!S.base) return OVERFLOW;
    S.top = S.base;
    S.stacksize = MAXSIZE;
    return OK;
}

// 判断顺序栈是否为空
bool StackEmpty(SqStack S) {
    if (S.top == S.base) return true;
    else return false;
}

// 判断是否为满栈
bool StackFull(SqStack S) {
    if (S.top - S.base >= S.stacksize) 
        return true;
    else return false;
}

// 顺序栈的长度
int StackLength(SqStack S) {
    return S.top - S.base;
}

// 输出栈顶元素
Status Gettop(SqStack S, SElemType& e) {
    // SElemType* p;
    if (StackEmpty(S))  // 栈空
        return ERROR;
    // p = S.top - 1;
    // e = *p;
    e = *(S.top - 1);
    return OK;
}

// 入栈
Status Push(SqStack& S, SElemType e) {
    if (StackFull(S))  // 满栈 
        return ERROR;
    *S.top++ = e;
    // *S.top = e;
    // S.top ++;
    return OK;
}

// 出栈
Status Pop(SqStack& S, SElemType& e) {
    if (StackEmpty(S))  // 栈空
        return ERROR;
    e = *--S.top;
    // S.top --;
    // e = *S.top;
    return OK;
}

// 清空顺序栈
Status ClearStack(SqStack& S) {
    // S.stacksize = 0;
    if(S.base) S.top = S.base;
    cout << "清空成功!" << endl;
    return OK;
}

// 销毁顺序栈
Status DestroyStack(SqStack& S) {
    if (S.base) {
        delete S.base;
        S.stacksize = 0;
        S.base = S.top = NULL;
    }
    cout << "销毁成功!" << endl;
    return OK;
}

// 输入
void Creat(SqStack& S, int m) {
    int i;
    SElemType x;
    for (i = 1; i < m + 1; i++) {
        cout << "请输入第" << i << "个元素: ";
        cin >> x;
        Push(S, x);
    //    S.stacksize++;
    }
}

// 输出
void OutPut(SqStack S) {
    SElemType* p;
    p = S.base;
    while (p < S.top)
        cout << *p++ << " ";
    cout << endl;
}

int main()
{
    int m;
    SElemType e;
    SqStack S;

    /*---------------测试--------------*/
    InitStack(S);

    cout << "请输入栈的长度: ";
    cin >> m;
    Creat(S, m);
    cout << "栈中元素为: ";
    OutPut(S);

    cout << "顺序栈的长度为: ";
    cout << StackLength(S) << endl;

    // 入栈测试
    cout << "请输入入栈元素: ";
    cin >> e;
    Push(S, e);
    cout << "栈中元素为: ";
    OutPut(S);

    cout << "顺序栈的长度为: ";
    cout << StackLength(S) << endl;

    // 获取栈顶元素测试
    Gettop(S, e);
    cout << "栈顶元素为: " << e <<endl;

    cout << "顺序栈的长度为: ";
    cout << StackLength(S) << endl;

    // 出栈测试
    Pop(S, e);
    cout << "弹出的元素为: " << e << endl;

    cout << "栈中元素为: ";
    OutPut(S);

    cout << "顺序栈的长度为: ";
    cout << StackLength(S) << endl;

    // 清空测试
    ClearStack(S);
    cout << "顺序栈的长度为: ";
    cout << StackLength(S) << endl;

    // 销毁测试
    DestroyStack(S);
    return 0;
}
请输入栈的长度: 3
请输入第1个元素: 1
请输入第2个元素: 2
请输入第3个元素: 3
栈中元素为: 1 2 3
顺序栈的长度为: 3
请输入入栈元素: 7
栈中元素为: 1 2 3 7
顺序栈的长度为: 4
栈顶元素为: 7
顺序栈的长度为: 4
弹出的元素为: 7
栈中元素为: 1 2 3
顺序栈的长度为: 3
清空成功!
顺序栈的长度为: 0
销毁成功!



目录
相关文章
|
1月前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
202 9
|
1月前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
32 1
|
26天前
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
52 5
|
1月前
|
存储 算法 Java
数据结构的栈
栈作为一种简单而高效的数据结构,在计算机科学和软件开发中有着广泛的应用。通过合理地使用栈,可以有效地解决许多与数据存储和操作相关的问题。
|
1月前
|
存储 JavaScript 前端开发
执行上下文和执行栈
执行上下文是JavaScript运行代码时的环境,每个执行上下文都有自己的变量对象、作用域链和this值。执行栈用于管理函数调用,每当调用一个函数,就会在栈中添加一个新的执行上下文。
|
1月前
|
存储
系统调用处理程序在内核栈中保存了哪些上下文信息?
【10月更文挑战第29天】系统调用处理程序在内核栈中保存的这些上下文信息对于保证系统调用的正确执行和用户程序的正常恢复至关重要。通过准确地保存和恢复这些信息,操作系统能够实现用户模式和内核模式之间的无缝切换,为用户程序提供稳定、可靠的系统服务。
51 4
|
2月前
|
算法 程序员 索引
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
栈的基本概念、应用场景以及如何使用数组和单链表模拟栈,并展示了如何利用栈和中缀表达式实现一个综合计算器。
48 1
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
|
1月前
|
算法 安全 NoSQL
2024重生之回溯数据结构与算法系列学习之栈和队列精题汇总(10)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第3章之IKUN和I原达人之数据结构与算法系列学习栈与队列精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
1月前
|
算法
数据结构之购物车系统(链表和栈)
本文介绍了基于链表和栈的购物车系统的设计与实现。该系统通过命令行界面提供商品管理、购物车查看、结算等功能,支持用户便捷地管理购物清单。核心代码定义了商品、购物车商品节点和购物车的数据结构,并实现了添加、删除商品、查看购物车内容及结算等操作。算法分析显示,系统在处理小规模购物车时表现良好,但在大规模购物车操作下可能存在性能瓶颈。
49 0
|
2月前
初步认识栈和队列
初步认识栈和队列
65 10