Flutter 102: 何为 Flutter RenderObjects ?

简介: 0 基础学习 Flutter,第一百零二步:简单学习 RenderObject 的基本知识!

      小菜前段时间简单了解了一下 WidgetElement,其中 Widget 主要是存放渲染内容以及布局信息等,仅作为一个信息存储的容器;Element 主要用于存放上下文环境,遍历 UI View 视图树;而小菜今天尝试学习的 RenderObject 才是 UI View 真正的渲染部分;

RenderObject

      RenderObject 作为渲染树中的一个对象;其 layout()paint() 是渲染库核心,负责管理布局和渲染等;RenderObject 定义了布局绘制协议,但并没定义具体布局绘制模型;

源码分析

      RenderObject 可以从多个维度研究,可以通过 layout()paint() 对比 Android 的绘制流程,也可以根据其属性和交互的对象(parent / owner / child)来学习;小菜从头开始为了尽可能多的了解源码,尝试第二种方式进一步学习;

abstract class RenderObject extends AbstractNode with DiagnosticableTreeMixin implements HitTestTarget {
    AbstractNode _rootNode;
    ParentData parentData;
    Constraints _constraints;
    @protected
    Constraints get constraints => _constraints;
    PipelineOwner _owner;
    bool get attached => _owner != null;
    void setupParentData(covariant RenderObject child) {}
    void adoptChild(RenderObject child) {}
    void dropChild(RenderObject child) {}
    void attach(PipelineOwner owner) {}
    void detach() {}
}

parent 相关

1. ParentData
ParentData parentData;

void setupParentData(covariant RenderObject child) {
    assert(_debugCanPerformMutations);
    if (child.parentData is! ParentData)
      child.parentData = ParentData();
}

      RenderObject 包括两个重要属性 parentParentData 插槽;ParentData 做为一个预留的变量,由 parent 赋值,传递信息给 child 的存储容器;通常所有和 child 特定的数据都可以存储在 ParentData 中;

2. Constraints
void layout(Constraints constraints, { bool parentUsesSize = false }) {
    RenderObject relayoutBoundary;
    if (!parentUsesSize || sizedByParent || constraints.isTight || parent is! RenderObject) {
      relayoutBoundary = this;
    } else {
      final RenderObject parent = this.parent;
      relayoutBoundary = parent._relayoutBoundary;
    }
   
    if (!_needsLayout && constraints == _constraints && relayoutBoundary == _relayoutBoundary) return;
    _constraints = constraints;
    if (_relayoutBoundary != null && relayoutBoundary != _relayoutBoundary) {
      visitChildren((RenderObject child) {
        child._cleanRelayoutBoundary();
      });
    }
    _relayoutBoundary = relayoutBoundary;
    
    if (sizedByParent) {
      try {
        performResize();
      } catch (e, stack) {
        _debugReportException('performResize', e, stack);
      }
    }
    RenderObject debugPreviousActiveLayout;
    try {
      performLayout();
      markNeedsSemanticsUpdate();
    } catch (e, stack) {
      _debugReportException('performLayout', e, stack);
    }
    _needsLayout = false;
    markNeedsPaint();
}

      Constraints 作为 RenderObjectparentchild 之间的布局约束;layout() 作为 RenderObject 的核心方法,需要传入 Constraints 作为约束,配合 parentUsesSize 判断 RenderObjectchild 子节点发生变化时,parent 父节点是否需要重新绘制;

3. relayoutBoundary
RenderObject relayoutBoundary;
if (!parentUsesSize || sizedByParent || constraints.isTight || parent is! RenderObject) {
  relayoutBoundary = this;
} else {
  final RenderObject parent = this.parent;
  relayoutBoundary = parent._relayoutBoundary;
}
if (_relayoutBoundary != null && relayoutBoundary != _relayoutBoundary) {
  visitChildren((RenderObject child) {
    child._cleanRelayoutBoundary();
  });
}

void markNeedsLayout() {
    if (_needsLayout) {
      return;
    }
    if (_relayoutBoundary != this) {
      markParentNeedsLayout();
    } else {
      _needsLayout = true;
      if (owner != null) {
        owner._nodesNeedingLayout.add(this);
        owner.requestVisualUpdate();
      }
    }
}

      layout() 中定义了一个 RenderObject 类型的 relayoutBoundary 布局边界,如果布局边界发生变化,则遍历清空所有已记录的边界并重新设置;

      markNeedsLayout() 中也需要进行布局边界判断,若 RenderObject 自身不是 relayoutBoundary,则向 parent 父节点查找,直到找到确定是 relayoutBoundaryRenderObject 并标记为 dirty

      layout() 确定自己是否为边界需要判断四个条件,分别是 !parentUsesSize parent 父节点是否关心自己的大小;sizedByParent 是否由 parent 父节点判断大小;constraints.isTight 是否严格约束;parent is! RenderObject 自身是否为 root 根节点;

owner 相关

      PipelineOwner 作为整个渲染流程的管理者;提供用于驱动渲染管道的接口,并存储在管道的每个阶段中已请求访问渲染对象的状态等;

1. flushLayout
void flushLayout() {
    if (!kReleaseMode) {
      Timeline.startSync('Layout', arguments: timelineWhitelistArguments);
    }
    try {
      while (_nodesNeedingLayout.isNotEmpty) {
        final List<RenderObject> dirtyNodes = _nodesNeedingLayout;
        _nodesNeedingLayout = <RenderObject>[];
        for (RenderObject node in dirtyNodes..sort((RenderObject a, RenderObject b) => a.depth - b.depth)) {
          if (node._needsLayout && node.owner == this)
            node._layoutWithoutResize();
        }
      }
    } finally {
      if (!kReleaseMode)  Timeline.finishSync();
    }
}

      flushLayout() 用于遍历所有标记为 dirty 的需要重新布局的 RenderObjects 并重新计算其布局尺寸和位置等;

2. flushCompositingBits
void flushCompositingBits() {
    if (!kReleaseMode) {
      Timeline.startSync('Compositing bits');
    }
    _nodesNeedingCompositingBitsUpdate.sort((RenderObject a, RenderObject b) => a.depth - b.depth);
    for (RenderObject node in _nodesNeedingCompositingBitsUpdate) {
      if (node._needsCompositingBitsUpdate && node.owner == this)
        node._updateCompositingBits();
    }
    _nodesNeedingCompositingBitsUpdate.clear();
    if (!kReleaseMode) {
      Timeline.finishSync();
    }
}

      flushCompositingBits() 用于遍历所有标记为 dirty 的需要 CompositingBitsUpdate 合并更新的子节点,再次阶段,每个 RenderObject 都会了解其子节点是否需要合并更新;

3. flushPaint
void flushPaint() {
    if (!kReleaseMode) {
      Timeline.startSync('Paint', arguments: timelineWhitelistArguments);
    }
    try {
      final List<RenderObject> dirtyNodes = _nodesNeedingPaint;
      _nodesNeedingPaint = <RenderObject>[];
      for (RenderObject node in dirtyNodes..sort((RenderObject a, RenderObject b) => b.depth - a.depth)) {
        if (node._needsPaint && node.owner == this) {
          if (node._layer.attached) {
            PaintingContext.repaintCompositedChild(node);
          } else { node._skippedPaintingOnLayer(); }
        }
      }
    } finally {
      if (!kReleaseMode) { Timeline.finishSync(); }
    }
}

      flushPaint() 用于遍历所有标记为 dirty 的需要重新绘制的子节点,并生成 Layer 用于绘制展示;

4. attach / detach
@override
void attach(PipelineOwner owner) {
    super.attach(owner);
    if (_needsLayout && _relayoutBoundary != null) {
      _needsLayout = false;
      markNeedsLayout();
    }
    if (_needsCompositingBitsUpdate) {
      _needsCompositingBitsUpdate = false;
      markNeedsCompositingBitsUpdate();
    }
    if (_needsPaint && _layer != null) {
      _needsPaint = false;
      markNeedsPaint();
    }
    if (_needsSemanticsUpdate && _semanticsConfiguration.isSemanticBoundary) {
      _needsSemanticsUpdate = false;
      markNeedsSemanticsUpdate();
    }
}

      layout() 中在 attach()detach() 中也需要 PipelineOwnerattach() 主要通知管理者 owner 将其插入到渲染树中标记需要计算布局 layout 并调用 markNeedsPaint 重新绘制;detach() 主要是通知管理者取消关联;

child 相关

      对于 child 子节点,小菜主要学习如下三个方法;

1. adoptChild
@override
void adoptChild(RenderObject child) {
    setupParentData(child);
    markNeedsLayout();
    markNeedsCompositingBitsUpdate();
    markNeedsSemanticsUpdate();
    super.adoptChild(child);
}

      adoptChild() 主要是 RenderObject 添加一个 child 子节点;其中需要通过 setupParentData() 来获取 ParentData 中的数据并更新;

2. dropChild
@override
void dropChild(RenderObject child) {
    child._cleanRelayoutBoundary();
    child.parentData.detach();
    child.parentData = null;
    super.dropChild(child);
    markNeedsLayout();
    markNeedsCompositingBitsUpdate();
    markNeedsSemanticsUpdate();
}

      dropChild() 是和 adoptChild() 对应的方法,主要用于 RenderObject 删除一个 child 子节点;删除过程中需要 _cleanRelayoutBoundary 清除边界并删除 ParentData,之后再更新;

3. paintChild
void paintChild(RenderObject child, Offset offset) {
    if (child.isRepaintBoundary) {
      stopRecordingIfNeeded();
      _compositeChild(child, offset);
    } else {
      child._paintWithContext(this, offset);
    }
}

      paintChild() 为绘制一个子节点的 RenderObject;如果该子节点有自己合成层,则 child 子节点将被合成到与此绘制相关的上下文相关的 Layer 层中;

RenderBox

      RenderObject 并没定义具体布局绘制模型,所以小菜简单学习了一下 RenderBoxRenderBoxRenderObject 的子类,以屏幕左上角为原点(包括顶部状态栏)坐标系;BoxParentData 作为 child 子节点传输数据,BoxConstraints 作为其约束条件,通过 Size 记录其尺寸大小;可以定义具体的布局绘制模型;


      RenderObject 涉及的方式方法较多,小菜对于源码的理解还不够深入,如有错误,请多多指导!

来源: 阿策小和尚

目录
相关文章
|
1月前
|
Android开发 iOS开发 容器
鸿蒙harmonyos next flutter混合开发之开发FFI plugin
鸿蒙harmonyos next flutter混合开发之开发FFI plugin
|
5月前
|
开发框架 前端开发 测试技术
Flutter开发常见问题解答
Flutter开发常见问题解答
|
28天前
|
开发者
鸿蒙Flutter实战:07-混合开发
鸿蒙Flutter混合开发支持两种模式:1) 基于har包,便于主项目开发者无需关心Flutter细节,但不支持热重载;2) 基于源码依赖,利于代码维护与热重载,需配置Flutter环境。项目结构包括AppScope、flutter_module等目录,适用于不同开发需求。
69 3
|
13天前
|
传感器 开发框架 物联网
鸿蒙next选择 Flutter 开发跨平台应用的原因
鸿蒙(HarmonyOS)是华为推出的一款旨在实现多设备无缝连接的操作系统。为了实现这一目标,鸿蒙选择了 Flutter 作为主要的跨平台应用开发框架。Flutter 的跨平台能力、高性能、丰富的生态支持和与鸿蒙系统的良好兼容性,使其成为理想的选择。通过 Flutter,开发者可以高效地构建和部署多平台应用,推动鸿蒙生态的快速发展。
114 0
|
15天前
|
Dart 安全 UED
Flutter&鸿蒙next中的表单封装:提升开发效率与用户体验
在移动应用开发中,表单是用户与应用交互的重要界面。本文介绍了如何在Flutter中封装表单,以提升开发效率和用户体验。通过代码复用、集中管理和一致性的优势,封装表单组件可以简化开发流程。文章详细讲解了Flutter表单的基础、封装方法和表单验证技巧,帮助开发者构建健壮且用户友好的应用。
55 0
|
1月前
|
开发框架 移动开发 Android开发
安卓与iOS开发中的跨平台解决方案:Flutter入门
【9月更文挑战第30天】在移动应用开发的广阔舞台上,安卓和iOS两大操作系统各自占据半壁江山。开发者们常常面临着选择:是专注于单一平台深耕细作,还是寻找一种能够横跨两大系统的开发方案?Flutter,作为一种新兴的跨平台UI工具包,正以其现代、响应式的特点赢得开发者的青睐。本文将带你一探究竟,从Flutter的基础概念到实战应用,深入浅出地介绍这一技术的魅力所在。
74 7
|
28天前
|
编解码 Dart API
鸿蒙Flutter实战:06-使用ArkTs开发Flutter鸿蒙插件
本文介绍了如何开发一个 Flutter 鸿蒙插件,实现 Flutter 与鸿蒙的混合开发及双端消息通信。通过定义 `MethodChannel` 实现 Flutter 侧的 token 存取方法,并在鸿蒙侧编写 `EntryAbility` 和 `ForestPlugin`,使用鸿蒙的首选项 API 完成数据的读写操作。文章还提供了注意事项和参考资料,帮助开发者更好地理解和实现这一过程。
56 0
|
28天前
|
Dart Android开发
鸿蒙Flutter实战:03-鸿蒙Flutter开发中集成Webview
本文介绍了在OpenHarmony平台上集成WebView的两种方法:一是使用第三方库`flutter_inappwebview`,通过配置pubspec.lock文件实现;二是编写原生ArkTS代码,自定义PlatformView,涉及创建入口能力、注册视图工厂、处理方法调用及页面构建等步骤。
47 0
|
2月前
|
JSON Dart Java
flutter开发多端平台应用的探索
flutter开发多端平台应用的探索
50 6
|
2月前
|
JSON Dart Java
flutter开发多端平台应用的探索 下 (跨模块、跨语言通信之平台通道)
flutter开发多端平台应用的探索 下 (跨模块、跨语言通信之平台通道)