涂鸦智能 dubbo-go 亿级流量的实践与探索

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
注册配置 MSE Nacos/ZooKeeper,118元/月
云原生网关 MSE Higress,422元/月
简介: dubbo 是一个基于 Java 开发的高性能的轻量级 RPC 框架,dubbo 提供了丰富的服务治理功能和优秀的扩展能力。而 dubbo-go 在 java 与 golang 之间提供统一的服务化能力与标准,是涂鸦智能目前最需要解决的主要问题。

image.png

dubbo 是一个基于 Java 开发的高性能的轻量级 RPC 框架,dubbo 提供了丰富的服务治理功能和优秀的扩展能力。而 dubbo-go 在 java 与 golang 之间提供统一的服务化能力与标准,是涂鸦智能目前最需要解决的主要问题。本文分为实践和快速接入两部分,分享在涂鸦智能的 dubbo-go 实战经验,意在帮助用户快速接入 dubbo-go RPC 框架,希望能让大家少走些弯路。另外,文中的测试代码基于 dubbo-go版本 v1.4.0。

dubbo-go 网关实践

image.png

dubbo-go 在涂鸦智能的使用情况如上图,接下来会为大家详细介绍落地细节,希望这些在生产环境中总结的经验能够帮助到大家。

1. 背景

在涂鸦智能,dubbo-go 已经作为了 golang 服务与原有 dubbo 集群打通的首选 RPC 框架。其中比较有代表性的 open-gateway 网关系统(下文统一称 gateway,开源版本见 https://github.com/dubbogo/dubbo-go-proxy)。该 gateway 动态加载内部 dubbo 接口信息,以HTTP API 的形式对外暴露。该网关意在解决上一代网关的以下痛点。

  • 通过页面配置 dubbo 接口开放规则,步骤繁琐,权限难以把控;
  • 接口非 RESTful 风格,对外部开发者不友好;
  • 依赖繁重,升级风险大;
  • 并发性能问题。

2. 架构设计

针对如上痛点,随即着手准备设计新的 gateway 架构。首先就是语言选型,golang 的协程调用模型使得 golang 非常适合构建 IO 密集型的应用,且应用部署上也较 java 简单。

经过调研后我们敲定使用 golang 作为 proxy 的编码语言,并使用 dubbo-go 用于连接 dubbo provider 集群。provider 端的业务应用通过使用 java 的插件,以注解形式配置 API 配置信息,该插件会将配置信息和 dubbo 接口元数据更新到元数据注册中心(下图中的 redis )。这样一来,配置从管理后台页面转移到了程序代码中。开发人员在编码时,非常方便地看到 dubbo 接口对外的 API 描述,无需从另外一个管理后台配置 API 的使用方式。

image.png

3. 实践

从上图可以看到,网关能动态加载 dubbo 接口信息,调用 dubbo 接口是基于 dubbo 泛化调用。泛化调用使 client 不需要构建 provider 的 interface 代码,在 dubbo-go 中表现为无需调用 config.SetConsumerService 和 hessian.RegisterPOJO 方法,而是将请求模型纯参数完成,这使得 client 动态新增、修改接口成为可能。在 apache / dubbo-sample / golang / generic / go-client 中的有泛化调用的演示代码。

func test() {

var appName = "UserProviderGer"
var referenceConfig = config.ReferenceConfig{
    InterfaceName: "com.ikurento.user.UserProvider",
    Cluster:       "failover",
    Registry:      "hangzhouzk",
    Protocol:      dubbo.DUBBO,
    Generic:       true,
}
referenceConfig.GenericLoad(appName) // appName is the unique identification of RPCService
time.Sleep(3 * time.Second)
resp, err := referenceConfig.GetRPCService().(*config.GenericService).
    Invoke([]interface{}{"GetUser", []string{"java.lang.String"}, []interface{}{"A003"}})
if err != nil {
    panic(err)
}

}

泛化调用的实现其实相当简单。其功能作用在 dubbo 的 Filter 层中。Generic Filter 已经作为默认开启的 Filter 加入到 dubbo Filter 链中。其核心逻辑如下:

func (ef *GenericFilter) Invoke(ctx context.Context, invoker protocol.Invoker, invocation protocol.Invocation) protocol.Result {

if invocation.MethodName() == constant.GENERIC && len(invocation.Arguments()) == 3 {
    oldArguments := invocation.Arguments()
    if oldParams, ok := oldArguments[2].([]interface{}); ok {
        newParams := make([]hessian.Object, 0, len(oldParams))
        for i := range oldParams {
            newParams = append(newParams, hessian.Object(struct2MapAll(oldParams[i])))
        }
        newArguments := []interface{}{
            oldArguments[0],
            oldArguments[1],
            newParams,
        }
        newInvocation := invocation2.NewRPCInvocation(invocation.MethodName(), newArguments, invocation.Attachments())
        newInvocation.SetReply(invocation.Reply())
        return invoker.Invoke(ctx, newInvocation)
    }
}
return invoker.Invoke(ctx, invocation)

}

Generic Filter 将用户请求的结构体参数转化为统一格式的 map(代码中的 struct2MapAll ),将类( golang 中为 struct )的正反序列化操作变成 map 的正反序列化操作。这使得无需 POJO 描述通过硬编码注入 hessain 库。

从上面代码可以看到,泛化调用实际需要动态构建的内容有 4 个,ReferenceConfig 中需要的 InterfaceName、参数中的 method、ParameterTypes、实际入参 requestParams。

那么这些参数是如何从 HTTP API 匹配获取到的呢?

这里就会用到上文提到的 provider 用于收集元数据的插件。引入插件后,应用在启动时会扫描需要暴露的 dubbo 接口,将 dubbo 元数据和 HTTP API 关联。插件使用方法大致如下,这里调了几个简单的配置作为示例,实际生产时注解内容会更多。

image.png

最终获得的 dubbo 元数据如下:

{

"key": "POST:/hello/{uid}/add",
"interfaceName": "com.tuya.hello.service.template.IUserServer",
"methodName": "addUser",
"parameterTypes": ["com.tuya.gateway.Context", "java.lang.String", "com.tuya.hello.User"],
"parameterNames": ["context", "uid", "userInfo"],
"updateTimestamp": "1234567890",
"permissionDO":{},
"voMap": {
    "userInfo": {
        "name": "java.lang.String",
        "sex": "java.lang.String",
        "age": "java.lang.Integer"
    }
},
"parameterNameHumpToLine": true,
"resultFiledHumpToLine": false,
"protocolName": "dubbo",

.......
}

Gateway 从元数据配置中心订阅到以上信息,就能把一个 API 请求匹配到一个 dubbo 接口。再从 API 请求中抓取参数作为入参。这样功能就完成了流量闭环。

以上内容,大家应该对此 gateway 的项目拓扑结构有了清晰的认知。我接着分享项目在使用 dubbo-go 过程中遇到的问题和调优经验。19 年初,当时的 dubbo-go 项目还只是构建初期,没有什么用户落地的经验。我也是一边参与社区开发,一边编码公司内部网关项目。在解决了一堆 hessain 序列化和 zookeeper 注册中心的问题后,项目最终跑通了闭环。但是,作为一个核心应用,跑通闭环离上生产环境还有很长的路要走,特别是使用了当时稳定性待测试的新框架。整个测试加上功能补全,整整花费了一个季度的时间,直到项目趋于稳定,压测效果也良好。单台网关机器( 2C 8G )全链路模拟真实环境压测达到 2000 QPS。由于引入了比较重的业务逻辑(单个请求平均调用 3 个 dubbo 接口),对于这个压测结果,是符合甚至超出预期的。

总结了一些 dubbo-go 参数配置调优的经验,主要是一些网络相关配置。

大家在跑 demo 时,应该会看到配置文件最后有一堆配置,但如果对 dubbo-go 底层网络模型不熟悉,就很难理解这些配置的含义。目前 dubbo-go 网络层以 getty 为底层框架,实现读写分离和协程池管理。getty 对外暴露 session 的概念,session 提供一系列网络层方法注入的实现,因为本文不是源码解析文档,在这里不过多论述。读者可以简单的认为 dubbo-go 维护了一个 getty session池,session 又维护了一个 TCP 连接池。对于每个连接,getty 会有读协程和写协程伴生,做到读写分离。这里我尽量用通俗的注释帮大家梳理下对性能影响较大的几个配置含义:

protocol_conf:
# 这里是协议独立的配置,在dubbo协议下,大多数配置即为getty session相关的配置。
dubbo:

  # 一个session会始终保证connection_number个tcp连接个数,默认是16,
# 但这里建议大家配置相对小的值,一般系统不需要如此多的连接个数。
# 每隔reconnect_interval时间,检查连接个数,如果小于connection_number,
# 就建立连接。填0或不填都为默认值300ms
reconnect_interval: 0
connection_number: 2
# 客户端发送心跳的间隔
heartbeat_period: "30s"
# OnCron时session的超时时间,超过session_timeout无返回就关闭session
session_timeout: "30s"
# 每一个dubbo interface的客户端,会维护一个最大值为pool_size大小的session池。
# 每次请求从session池中select一个。所以真实的tcp数量是session数量*connection_number,
# 而pool_size是session数量的最大值。测试总结下来一般程序4个tcp连接足以。
pool_size: 4
# session保活超时时间,也就是超过session_timeout时间没有使用该session,就会关闭该session
pool_ttl: 600
# 处理返回值的协程池大小
gr_pool_size: 1200
# 读数据和协程池中的缓冲队列长度,目前已经废弃。不使用缓冲队列
queue_len: 64
queue_number: 60
getty_session_param:
  compress_encoding: false
  tcp_no_delay: true
  tcp_keep_alive: true
  keep_alive_period: "120s"
  tcp_r_buf_size: 262144
  tcp_w_buf_size: 65536
  pkg_wq_size: 512
  tcp_read_timeout: "1s"  # 每次读包的超时时间
  tcp_write_timeout: "5s" # 每次写包的超时时间
  wait_timeout: "1s" 
  max_msg_len: 102400     # 最大数据传输长度
  session_name: "client"

dubbo-go 快速接入

前文已经展示过 dubbo-go 在涂鸦智能的实践成果,接下来介绍快速接入 dubbo-go 的方式。

第一步:hello world

dubbo-go 使用范例目前和 dubbo 一致,放置在 apache/dubbo-samples 项目中。在 dubbo-sample/golang 目录下,用户可以选择自己感兴趣的 feature 目录,快速测试代码效果。

tree dubbo-samples/golang -L 1
dubbo-samples/golang
├── README.md
├── async
├── ci.sh
├── configcenter
├── direct
├── filter
├── general
├── generic
├── go.mod
├── go.sum
├── helloworld
├── multi_registry
└── registry

我们以 hello world 为例,按照 dubbo-samples/golang/README.md 中的步骤,分别启动 server 和 client 。可以尝试 golang 调用 java 、 java 调用 golang 、golang 调用 golang 、java 调用 java。dubbo-go 在协议上支持和 dubbo 互通。

我们以启动 go-server 为例,注册中心默认使用 zookeeper 。首先确认本地的 zookeeper 是否运行正常。然后执行以下命令,紧接着你就可以看到你的服务正常启动的日志了。

export ARCH=mac
export ENV=dev
cd dubbo-samples/golang/helloworld/dubbo/go-server
sh ./assembly/$ARCH/$ENV.sh
cd ./target/darwin/user_info_server-2.6.0-20200608-1056-dev/
sh ./bin/load.sh start

第二步:在项目中使用 dubbo-go

上面,我们通过社区维护的测试代码和启动脚本将用例跑了起来。接下来,我们需要在自己的代码中嵌入 dubbo-go 框架。很多朋友往往是在这一步遇到问题,这里我整理的一些常见问题,希望能帮到大家。

1)环境变量

目前 dubbo-go 有 3 个环境变量需要配置:

  • CONF_CONSUMER_FILE_PATH:Consumer 端配置文件路径,使用 consumer 时必需;
  • CONF_PROVIDER_FILE_PATH:Provider 端配置文件路径,使用 provider 时必需;
  • APP_LOG_CONF_FILE:Log 日志文件路径,必需;
  • CONF_ROUTER_FILE_PATH:File Router 规则配置文件路径,使用 File Router 时需要。

2)代码注意点

  • 注入服务 : 检查是否执行以下代码

image.png

  • 注入序列化描述 :检查是否执行以下代码

image.png

3)正确理解配置文件

  • references / services 下的 key ,如下面例子的 "UserProvider" 需要和服务 Reference() 返回值保持一致,此为标识改接口的 key。

references:
"UserProvider":
registry: "hangzhouzk"
protocol : "dubbo"
interface : "com.ikurento.user.UserProvider"
cluster: "failover"
methods :

  • name: "GetUser"
    retries: 3
  • 注册中心如果只有一个注册中心集群,只需配置一个。多个 IP 用逗号隔开,如下:

registries :
"hangzhouzk":
protocol: "zookeeper"
timeout : "3s"
address: "172.16.120.181:2181,172.16.120.182:2181"
username: ""
password: ""

4)java 和 go 的问题

go 和 java 交互的大小写 :golang 为了适配 java 的驼峰格式,在调用 java 服务时,会自动将 method 和属性首字母变成小写。很多同学故意将 java 代码写成适配 golang 的参数定义,将首字母大写,最后反而无法序列化匹配。

第三步:拓展功能

dubbo-go 和 dubbo 都提供了非常丰富的拓展机制。可以实现自定义模块代替 dubbo-go 默认模块,或者新增某些功能。比如实现 Cluster、Filter 、Router 等来适配业务的需求。这些注入方法暴露在 dubbo-go/common/extension 中,允许用户调用及配置。

本文转自<阿里巴巴云原生技术圈>——阿里巴巴云原生小助手

相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
相关文章
|
3月前
|
Go 调度 开发者
Go语言中的并发编程:深入理解与实践###
探索Go语言在并发编程中的独特优势,揭秘其高效实现的底层机制。本文通过实例和分析,引导读者从基础到进阶,掌握Goroutines、Channels等核心概念,提升并发处理能力。 ###
|
2月前
|
安全 Serverless Go
Go语言中的并发编程:深入理解与实践####
本文旨在为读者提供一个关于Go语言并发编程的全面指南。我们将从并发的基本概念讲起,逐步深入到Go语言特有的goroutine和channel机制,探讨它们如何简化多线程编程的复杂性。通过实例演示和代码分析,本文将揭示Go语言在处理并发任务时的优势,以及如何在实际项目中高效利用这些特性来提升性能和响应速度。无论你是Go语言的初学者还是有一定经验的开发者,本文都将为你提供有价值的见解和实用的技巧。 ####
|
2月前
|
算法 安全 程序员
Go语言的并发编程:深入理解与实践####
本文旨在探讨Go语言在并发编程方面的独特优势及其实现机制,通过实例解析关键概念如goroutine和channel,帮助开发者更高效地利用Go进行高性能软件开发。不同于传统的摘要概述,本文将以一个简短的故事开头,引出并发编程的重要性,随后详细阐述Go语言如何简化复杂并发任务的处理,最后通过实际案例展示其强大功能。 --- ###
|
5月前
|
Go UED
Go中的流量限制:有效控制流量
Go中的流量限制:有效控制流量
|
2月前
|
监控 Go API
Go语言在微服务架构中的应用实践
在微服务架构的浪潮中,Go语言以其简洁、高效和并发处理能力脱颖而出,成为构建微服务的理想选择。本文将探讨Go语言在微服务架构中的应用实践,包括Go语言的特性如何适应微服务架构的需求,以及在实际开发中如何利用Go语言的特性来提高服务的性能和可维护性。我们将通过一个具体的案例分析,展示Go语言在微服务开发中的优势,并讨论在实际应用中可能遇到的挑战和解决方案。
|
3月前
|
Dubbo 应用服务中间件 Apache
Dubbo 应用切换 ZooKeeper 注册中心实例,流量无损迁移
如果 Dubbo 应用使用 ZooKeeper 作为注册中心,现在需要切换到新的 ZooKeeper 实例,如何做到流量无损?
44 4
|
3月前
|
Cloud Native Go API
Go语言在微服务架构中的创新应用与实践
本文深入探讨了Go语言在构建高效、可扩展的微服务架构中的应用。Go语言以其轻量级协程(goroutine)和强大的并发处理能力,成为微服务开发的首选语言之一。通过实际案例分析,本文展示了如何利用Go语言的特性优化微服务的设计与实现,提高系统的响应速度和稳定性。文章还讨论了Go语言在微服务生态中的角色,以及面临的挑战和未来发展趋势。
|
3月前
|
SQL 关系型数据库 MySQL
Go语言项目高效对接SQL数据库:实践技巧与方法
在Go语言项目中,与SQL数据库进行对接是一项基础且重要的任务
115 11
|
3月前
|
Go 开发者
Go语言中的并发编程:从基础到实践
在当今的软件开发中,并发编程已经成为了一项不可或缺的技能。Go语言以其简洁的语法和强大的并发支持,成为了开发者们的首选。本文将带你深入了解Go语言中的并发编程,从基础概念到实际应用,帮助你掌握这一重要的编程技能。
|
2月前
|
NoSQL 测试技术 Go
自动化测试在 Go 开源库中的应用与实践
本文介绍了 Go 语言的自动化测试及其在 `go mongox` 库中的实践。Go 语言通过 `testing` 库和 `go test` 命令提供了简洁高效的测试框架,支持单元测试、集成测试和基准测试。`go mongox` 库通过单元测试和集成测试确保与 MongoDB 交互的正确性和稳定性,使用 Docker Compose 快速搭建测试环境。文章还探讨了表驱动测试、覆盖率检查和 Mock 工具的使用,强调了自动化测试在开源库中的重要性。