springboot + aop + Lua分布式限流的最佳实践

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 分布式限流的几种实现方式

一、什么是限流?为什么要限流?

不知道大家有没有做过帝都的地铁,就是进地铁站都要排队的那种,为什么要这样摆长龙转圈圈?答案就是为了限流!因为一趟地铁的运力是有限的,一下挤进去太多人会造成站台的拥挤、列车的超载,存在一定的安全隐患。同理,我们的程序也是一样,它处理请求的能力也是有限的,一旦请求多到超出它的处理极限就会崩溃。为了不出现最坏的崩溃情况,只能耽误一下大家进站的时间。
在这里插入图片描述
限流是保证系统高可用的重要手段!!!

由于互联网公司的流量巨大,系统上线会做一个流量峰值的评估,尤其是像各种秒杀促销活动,为了保证系统不被巨大的流量压垮,会在系统流量到达一定阈值时,拒绝掉一部分流量。

限流会导致用户在短时间内(这个时间段是毫秒级的)系统不可用,一般我们衡量系统处理能力的指标是每秒的QPS或者TPS,假设系统每秒的流量阈值是1000,理论上一秒内有第1001个请求进来时,那么这个请求就会被限流。

二、限流方案

1、计数器

Java内部也可以通过原子类计数器AtomicIntegerSemaphore信号量来做简单的限流。

// 限流的个数
    private int maxCount = 10;
    // 指定的时间内
    private long interval = 60;
    // 原子类计数器
    private AtomicInteger atomicInteger = new AtomicInteger(0);
    // 起始时间
    private long startTime = System.currentTimeMillis();

    public boolean limit(int maxCount, int interval) {
        atomicInteger.addAndGet(1);
        if (atomicInteger.get() == 1) {
            startTime = System.currentTimeMillis();
            atomicInteger.addAndGet(1);
            return true;
        }
        // 超过了间隔时间,直接重新开始计数
        if (System.currentTimeMillis() - startTime > interval * 1000) {
            startTime = System.currentTimeMillis();
            atomicInteger.set(1);
            return true;
        }
        // 还在间隔时间内,check有没有超过限流的个数
        if (atomicInteger.get() > maxCount) {
            return false;
        }
        return true;
    }
2、漏桶算法

漏桶算法思路很简单,我们把水比作是请求,漏桶比作是系统处理能力极限,水先进入到漏桶里,漏桶里的水按一定速率流出,当流出的速率小于流入的速率时,由于漏桶容量有限,后续进入的水直接溢出(拒绝请求),以此实现限流。
在这里插入图片描述

3、令牌桶算法

令牌桶算法的原理也比较简单,我们可以理解成医院的挂号看病,只有拿到号以后才可以进行诊病。

系统会维护一个令牌(token)桶,以一个恒定的速度往桶里放入令牌(token),这时如果有请求进来想要被处理,则需要先从桶里获取一个令牌(token),当桶里没有令牌(token)可取时,则该请求将被拒绝服务。令牌桶算法通过控制桶的容量、发放令牌的速率,来达到对请求的限制。
在这里插入图片描述

4、Redis + Lua

很多同学不知道Lua是啥?个人理解,Lua脚本和 MySQL数据库的存储过程比较相似,他们执行一组命令,所有命令的执行要么全部成功或者失败,以此达到原子性。也可以把Lua脚本理解为,一段具有业务逻辑的代码块。

Lua本身就是一种编程语言,虽然redis 官方没有直接提供限流相应的API,但却支持了 Lua 脚本的功能,可以使用它实现复杂的令牌桶或漏桶算法,也是分布式系统中实现限流的主要方式之一。

相比Redis事务,Lua脚本的优点:

  • 减少网络开销: 使用Lua脚本,无需向Redis 发送多次请求,执行一次即可,减少网络传输
  • 原子操作:Redis 将整个Lua脚本作为一个命令执行,原子,无需担心并发
  • 复用:Lua脚本一旦执行,会永久保存 Redis 中,,其他客户端可复用

Lua脚本大致逻辑如下:

-- 获取调用脚本时传入的第一个key值(用作限流的 key)
local key = KEYS[1]
-- 获取调用脚本时传入的第一个参数值(限流大小)
local limit = tonumber(ARGV[1])

-- 获取当前流量大小
local curentLimit = tonumber(redis.call('get', key) or "0")

-- 是否超出限流
if curentLimit + 1 > limit then
    -- 返回(拒绝)
    return 0
else
    -- 没有超出 value + 1
    redis.call("INCRBY", key, 1)
    -- 设置过期时间
    redis.call("EXPIRE", key, 2)
    -- 返回(放行)
    return 1
end
  • 通过KEYS[1] 获取传入的key参数
  • 通过ARGV[1]获取传入的limit参数
  • redis.call方法,从缓存中getkey相关的值,如果为null那么就返回0
  • 接着判断缓存中记录的数值是否会大于限制大小,如果超出表示该被限流,返回0
  • 如果未超过,那么该key的缓存值+1,并设置过期时间为1秒钟以后,并返回缓存值+1

这种方式是本文推荐的方案,具体实现会在后边做细说。

5、网关层限流

限流常在网关这一层做,比如NginxOpenrestykongzuulSpring Cloud Gateway等,而像spring cloud - gateway网关限流底层实现原理,就是基于Redis + Lua,通过内置Lua限流脚本的方式。
在这里插入图片描述

三、Redis + Lua 限流实现

下面我们通过自定义注解aopRedis + Lua 实现限流,步骤会比较详细,为了小白能让快速上手这里啰嗦一点,有经验的老鸟们多担待一下。

1、环境准备

springboot 项目创建地址:https://start.spring.io,很方便实用的一个工具。
在这里插入图片描述

2、引入依赖包

pom文件中添加如下依赖包,比较关键的就是 spring-boot-starter-data-redisspring-boot-starter-aop

    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-data-redis</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-aop</artifactId>
        </dependency>
        <dependency>
            <groupId>com.google.guava</groupId>
            <artifactId>guava</artifactId>
            <version>21.0</version>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
        </dependency>
        <dependency>
            <groupId>org.apache.commons</groupId>
            <artifactId>commons-lang3</artifactId>
        </dependency>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
            <exclusions>
                <exclusion>
                    <groupId>org.junit.vintage</groupId>
                    <artifactId>junit-vintage-engine</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
    </dependencies>
3、配置application.properties

application.properties 文件中配置提前搭建好的 redis 服务地址和端口。

spring.redis.host=127.0.0.1

spring.redis.port=6379
4、配置RedisTemplate实例
@Configuration
public class RedisLimiterHelper {

    @Bean
    public RedisTemplate<String, Serializable> limitRedisTemplate(LettuceConnectionFactory redisConnectionFactory) {
        RedisTemplate<String, Serializable> template = new RedisTemplate<>();
        template.setKeySerializer(new StringRedisSerializer());
        template.setValueSerializer(new GenericJackson2JsonRedisSerializer());
        template.setConnectionFactory(redisConnectionFactory);
        return template;
    }
}

限流类型枚举类

/**
 * @author fu
 * @description 限流类型
 * @date 2020/4/8 13:47
 */
public enum LimitType {

    /**
     * 自定义key
     */
    CUSTOMER,

    /**
     * 请求者IP
     */
    IP;
}
5、自定义注解

我们自定义个@Limit注解,注解类型为ElementType.METHOD即作用于方法上。

period表示请求限制时间段,count表示在period这个时间段内允许放行请求的次数。limitType代表限流的类型,可以根据请求的IP自定义key,如果不传limitType属性则默认用方法名作为默认key。

/**
 * @author fu
 * @description 自定义限流注解
 * @date 2020/4/8 13:15
 */
@Target({ElementType.METHOD, ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
@Inherited
@Documented
public @interface Limit {

    /**
     * 名字
     */
    String name() default "";

    /**
     * key
     */
    String key() default "";

    /**
     * Key的前缀
     */
    String prefix() default "";

    /**
     * 给定的时间范围 单位(秒)
     */
    int period();

    /**
     * 一定时间内最多访问次数
     */
    int count();

    /**
     * 限流的类型(用户自定义key 或者 请求ip)
     */
    LimitType limitType() default LimitType.CUSTOMER;
}
6、切面代码实现
/**
 * @author fu
 * @description 限流切面实现
 * @date 2020/4/8 13:04
 */
@Aspect
@Configuration
public class LimitInterceptor {

    private static final Logger logger = LoggerFactory.getLogger(LimitInterceptor.class);

    private static final String UNKNOWN = "unknown";

    private final RedisTemplate<String, Serializable> limitRedisTemplate;

    @Autowired
    public LimitInterceptor(RedisTemplate<String, Serializable> limitRedisTemplate) {
        this.limitRedisTemplate = limitRedisTemplate;
    }

    /**
     * @param pjp
     * @author fu
     * @description 切面
     * @date 2020/4/8 13:04
     */
    @Around("execution(public * *(..)) && @annotation(com.xiaofu.limit.api.Limit)")
    public Object interceptor(ProceedingJoinPoint pjp) {
        MethodSignature signature = (MethodSignature) pjp.getSignature();
        Method method = signature.getMethod();
        Limit limitAnnotation = method.getAnnotation(Limit.class);
        LimitType limitType = limitAnnotation.limitType();
        String name = limitAnnotation.name();
        String key;
        int limitPeriod = limitAnnotation.period();
        int limitCount = limitAnnotation.count();

        /**
         * 根据限流类型获取不同的key ,如果不传我们会以方法名作为key
         */
        switch (limitType) {
            case IP:
                key = getIpAddress();
                break;
            case CUSTOMER:
                key = limitAnnotation.key();
                break;
            default:
                key = StringUtils.upperCase(method.getName());
        }

        ImmutableList<String> keys = ImmutableList.of(StringUtils.join(limitAnnotation.prefix(), key));
        try {
            String luaScript = buildLuaScript();
            RedisScript<Number> redisScript = new DefaultRedisScript<>(luaScript, Number.class);
            Number count = limitRedisTemplate.execute(redisScript, keys, limitCount, limitPeriod);
            logger.info("Access try count is {} for name={} and key = {}", count, name, key);
            if (count != null && count.intValue() <= limitCount) {
                return pjp.proceed();
            } else {
                throw new RuntimeException("You have been dragged into the blacklist");
            }
        } catch (Throwable e) {
            if (e instanceof RuntimeException) {
                throw new RuntimeException(e.getLocalizedMessage());
            }
            throw new RuntimeException("server exception");
        }
    }

    /**
     * @author fu
     * @description 编写 redis Lua 限流脚本
     * @date 2020/4/8 13:24
     */
    public String buildLuaScript() {
        StringBuilder lua = new StringBuilder();
        lua.append("local c");
        lua.append("\nc = redis.call('get',KEYS[1])");
        // 调用不超过最大值,则直接返回
        lua.append("\nif c and tonumber(c) > tonumber(ARGV[1]) then");
        lua.append("\nreturn c;");
        lua.append("\nend");
        // 执行计算器自加
        lua.append("\nc = redis.call('incr',KEYS[1])");
        lua.append("\nif tonumber(c) == 1 then");
        // 从第一次调用开始限流,设置对应键值的过期
        lua.append("\nredis.call('expire',KEYS[1],ARGV[2])");
        lua.append("\nend");
        lua.append("\nreturn c;");
        return lua.toString();
    }


    /**
     * @author fu
     * @description 获取id地址
     * @date 2020/4/8 13:24
     */
    public String getIpAddress() {
        HttpServletRequest request = ((ServletRequestAttributes) RequestContextHolder.getRequestAttributes()).getRequest();
        String ip = request.getHeader("x-forwarded-for");
        if (ip == null || ip.length() == 0 || UNKNOWN.equalsIgnoreCase(ip)) {
            ip = request.getHeader("Proxy-Client-IP");
        }
        if (ip == null || ip.length() == 0 || UNKNOWN.equalsIgnoreCase(ip)) {
            ip = request.getHeader("WL-Proxy-Client-IP");
        }
        if (ip == null || ip.length() == 0 || UNKNOWN.equalsIgnoreCase(ip)) {
            ip = request.getRemoteAddr();
        }
        return ip;
    }
}
7、控制层实现

我们将@Limit注解作用在需要进行限流的接口方法上,下边我们给方法设置@Limit注解,在10秒内只允许放行3个请求,这里为直观一点用AtomicInteger计数。

/**
 * @Author: fu
 * @Description:
 */
@RestController
public class LimiterController {

    private static final AtomicInteger ATOMIC_INTEGER_1 = new AtomicInteger();
    private static final AtomicInteger ATOMIC_INTEGER_2 = new AtomicInteger();
    private static final AtomicInteger ATOMIC_INTEGER_3 = new AtomicInteger();

    /**
     * @author fu
     * @description
     * @date 2020/4/8 13:42
     */
    @Limit(key = "limitTest", period = 10, count = 3)
    @GetMapping("/limitTest1")
    public int testLimiter1() {

        return ATOMIC_INTEGER_1.incrementAndGet();
    }

    /**
     * @author fu
     * @description
     * @date 2020/4/8 13:42
     */
    @Limit(key = "customer_limit_test", period = 10, count = 3, limitType = LimitType.CUSTOMER)
    @GetMapping("/limitTest2")
    public int testLimiter2() {

        return ATOMIC_INTEGER_2.incrementAndGet();
    }

    /**
     * @author fu
     * @description 
     * @date 2020/4/8 13:42
     */
    @Limit(key = "ip_limit_test", period = 10, count = 3, limitType = LimitType.IP)
    @GetMapping("/limitTest3")
    public int testLimiter3() {

        return ATOMIC_INTEGER_3.incrementAndGet();
    }

}
8、测试

测试预期:连续请求3次均可以成功,第4次请求被拒绝。接下来看一下是不是我们预期的效果,请求地址:http://127.0.0.1:8080/limitTest1,用postman进行测试,有没有postman url直接贴浏览器也是一样。

在这里插入图片描述
可以看到第四次请求时,应用直接拒绝了请求,说明我们的 Springboot + aop + lua 限流方案搭建成功。
在这里插入图片描述

总结

以上 springboot + aop + Lua 限流实现是比较简单的,旨在让大家认识下什么是限流?如何做一个简单的限流功能,面试要知道这是个什么东西。上面虽然说了几种实现限流的方案,但选哪种还要结合具体的业务场景,不能为了用而用。


小福利:

获取到一些极客课程 ,嘘~,免费 送给小伙伴们。公号【程序员内点事】回复【极客】自行领取

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
4月前
|
SQL 监控 Java
在IDEA 、springboot中使用切面aop实现日志信息的记录到数据库
这篇文章介绍了如何在IDEA和Spring Boot中使用AOP技术实现日志信息的记录到数据库的详细步骤和代码示例。
在IDEA 、springboot中使用切面aop实现日志信息的记录到数据库
|
4月前
|
存储 调度
分布式锁设计问题之云存储的最佳实践中保障分布式锁的容错能力如何解决
分布式锁设计问题之云存储的最佳实践中保障分布式锁的容错能力如何解决
|
2月前
|
缓存 NoSQL Java
大数据-50 Redis 分布式锁 乐观锁 Watch SETNX Lua Redisson分布式锁 Java实现分布式锁
大数据-50 Redis 分布式锁 乐观锁 Watch SETNX Lua Redisson分布式锁 Java实现分布式锁
64 3
大数据-50 Redis 分布式锁 乐观锁 Watch SETNX Lua Redisson分布式锁 Java实现分布式锁
|
1月前
|
JSON Java 数据库
SpringBoot项目使用AOP及自定义注解保存操作日志
SpringBoot项目使用AOP及自定义注解保存操作日志
39 1
|
2月前
|
JSON 缓存 Java
优雅至极!Spring Boot 3.3 中 ObjectMapper 的最佳实践
【10月更文挑战第5天】在Spring Boot的开发中,ObjectMapper作为Jackson框架的核心组件,扮演着处理JSON格式数据的核心角色。它不仅能够将Java对象与JSON字符串进行相互转换,还支持复杂的Java类型,如泛型、嵌套对象、集合等。在Spring Boot 3.3中,通过优雅地配置和使用ObjectMapper,我们可以更加高效地处理JSON数据,提升开发效率和代码质量。本文将从ObjectMapper的基本功能、配置方法、最佳实践以及性能优化等方面进行详细探讨。
110 2
|
2月前
|
缓存 NoSQL Java
Springboot自定义注解+aop实现redis自动清除缓存功能
通过上述步骤,我们不仅实现了一个高度灵活的缓存管理机制,还保证了代码的整洁与可维护性。自定义注解与AOP的结合,让缓存清除逻辑与业务逻辑分离,便于未来的扩展和修改。这种设计模式非常适合需要频繁更新缓存的应用场景,大大提高了开发效率和系统的响应速度。
68 2
|
2月前
|
消息中间件 监控 Java
Spring Boot 3.3 后台任务处理:最佳实践与高效策略
【10月更文挑战第10天】 在现代应用程序中,后台任务处理对于提高应用程序的响应性和吞吐量至关重要。Spring Boot 3.3提供了多种机制来实现高效的后台任务处理,包括异步方法、任务调度和使用消息队列等。本文将探讨这些机制的最佳实践和高效策略。
97 0
|
4月前
|
算法 Java UED
你的Spring Boot应用是否足够健壮?揭秘限流功能的实现秘诀
【8月更文挑战第29天】限流是保障服务稳定性的关键策略,通过限制单位时间内的请求数量防止服务过载。本文基于理论介绍,结合Spring Boot应用实例,展示了使用`@RateLimiter`注解和集成`Resilience4j`库实现限流的方法。无论采用哪种方式,都能有效控制请求速率,增强应用的健壮性和用户体验。通过这些示例,读者可以灵活选择适合自身需求的限流方案。
120 2
|
4月前
|
存储 NoSQL 算法
Go 分布式令牌桶限流 + 兜底保障
Go 分布式令牌桶限流 + 兜底保障
|
4月前
|
Java Spring 容器
SpringBoot整合AOP实现打印方法执行时间切面
SpringBoot整合AOP实现打印方法执行时间切面
47 1