Java并发线程池到底设置多大?

简介: Java并发线程池到底设置多大?

前言

在我们日常业务开发过程中,或多或少都会用到并发的功能。那么在用到并发功能的过程中,就肯定会碰到下面这个问题
并发线程池到底设置多大呢?
image

通常有点年纪的程序员或许都听说这样一个说法 (其中 N 代表 CPU 的个数)
CPU 密集型应用,线程池大小设置为 N + 1
IO 密集型应用,线程池大小设置为 2N
这个说法到底是不是正确的呢?
其实这是极不正确的。那为什么呢?
首先我们从反面来看,假设这个说法是成立的,那我们在一台服务器上部署多少个服务都无所谓了。因为线程池的大小只能服务器的核数有关,所以这个说法是不正确的。那具体应该怎么设置大小呢?
假设这个应用是两者混合型的,其中任务即有 CPU 密集,也有 IO 密集型的,那么我们改怎么设置呢?是不是只能抛硬盘来决定呢?
那么我们到底该怎么设置线程池大小呢?有没有一些具体实践方法来指导大家落地呢?让我们来深入地了解一下。
Little's Law(利特尔法则)
image

一个系统请求数等于请求的到达率与平均每个单独请求花费的时间之乘积
假设服务器单核的,对应业务需要保证请求量(QPS):10 ,真正处理一个请求需要 1 秒,那么服务器每个时刻都有 10 个请求在处理,即需要 10 个线程
image

同样,我们可以使用利特尔法则(Little’s law)来判定线程池大小。我们只需计算请求到达率和请求处理的平均时间。然后,将上述值放到利特尔法则(Little’s law)就可以算出系统平均请求数。估算公式如下
线程池大小 = ((线程 IO time + 线程 CPU time )/线程 CPU time ) CPU数目*

具体实践

通过公式,我们了解到需要 3 个具体数值
一个请求所消耗的时间 (线程 IO time + 线程 CPU time)
该请求计算时间 (线程 CPU time)

CPU 数目

请求消耗时间
Web 服务容器中,可以通过 Filter 来拦截获取该请求前后消耗的时间

public class MoniterFilter implements Filter {
private static final Logger logger = LoggerFactory.getLogger(MoniterFilter.class);
@Override
public void doFilter(ServletRequest request, ServletResponse response, FilterChain chain) throws IOException,
            ServletException {
long start = System.currentTimeMillis();
        HttpServletRequest httpRequest = (HttpServletRequest) request;
        HttpServletResponse httpResponse = (HttpServletResponse) response;
        String uri = httpRequest.getRequestURI();
        String params = getQueryString(httpRequest);
try {
            chain.doFilter(httpRequest, httpResponse);
        } finally {
long cost = System.currentTimeMillis() - start;
            logger.info("access url [{}{}], cost time [{}] ms )", uri, params, cost);
        }
private String getQueryString(HttpServletRequest req) {
        StringBuilder buffer = new StringBuilder("?");
        Enumeration<String> emParams = req.getParameterNames();
try {
while (emParams.hasMoreElements()) {
                String sParam = emParams.nextElement();
                String sValues = req.getParameter(sParam);
                buffer.append(sParam).append("=").append(sValues).append("&");
            }
return buffer.substring(0, buffer.length() - 1);
        } catch (Exception e) {
            logger.error("get post arguments error", buffer.toString());
        }
return "";
    }
}

CPU 计算时间

CPU 计算时间 = 请求总耗时 - CPU IO time
假设该请求有一个查询 DB 的操作,只要知道这个查询 DB 的耗时(CPU IO time),计算的时间不就出来了嘛,我们看一下怎么才能简洁,明了的记录 DB 查询的耗时。
通过(JDK 动态代理/ CGLIB)的方式添加 AOP 切面,来获取线程 IO 耗时。代码如下,请参考:

public class DaoInterceptor implements MethodInterceptor {
private static final Logger logger = LoggerFactory.getLogger(DaoInterceptor.class);
@Override
public Object invoke(MethodInvocation invocation) throws Throwable {
        StopWatch watch = new StopWatch();
        watch.start();
        Object result = null;
        Throwable t = null;
try {
            result = invocation.proceed();
        } catch (Throwable e) {
            t = e == null ? null : e.getCause();
throw e;
        } finally {
            watch.stop();
            logger.info("({}ms)", watch.getTotalTimeMillis());
        }
return result;
    }
}

CPU 数目

逻辑 CPU 个数 ,设置线程池大小的时候参考的 CPU 个数

cat /proc/cpuinfo| grep "processor"| wc -l

总结

合适的配置线程池大小其实很不容易,但是通过上述的公式和具体代码,我们就能快速、落地的算出这个线程池该设置的多大。
不过最后的最后,我们还是需要通过压力测试来进行微调,只有经过压测测试的检验,我们才能最终保证的配置大小是准确的。
欢迎大家关注我的公种浩【程序员追风】,文章都会在里面更新,整理的资料也会放在里面。

最后

欢迎大家一起交流,喜欢文章记得点个赞哟,感谢支持!

相关文章
|
6天前
|
Java Linux iOS开发
如何配置 Java 环境变量:设置 JAVA_HOME 和 PATH
本文详细介绍如何在Windows和Linux/macOS系统上配置Java环境变量。
199 12
|
20天前
|
监控 Java
java异步判断线程池所有任务是否执行完
通过上述步骤,您可以在Java中实现异步判断线程池所有任务是否执行完毕。这种方法使用了 `CompletionService`来监控任务的完成情况,并通过一个独立线程异步检查所有任务的执行状态。这种设计不仅简洁高效,还能确保在大量任务处理时程序的稳定性和可维护性。希望本文能为您的开发工作提供实用的指导和帮助。
82 17
|
30天前
|
Java
Java—多线程实现生产消费者
本文介绍了多线程实现生产消费者模式的三个版本。Version1包含四个类:`Producer`(生产者)、`Consumer`(消费者)、`Resource`(公共资源)和`TestMain`(测试类)。通过`synchronized`和`wait/notify`机制控制线程同步,但存在多个生产者或消费者时可能出现多次生产和消费的问题。 Version2将`if`改为`while`,解决了多次生产和消费的问题,但仍可能因`notify()`随机唤醒线程而导致死锁。因此,引入了`notifyAll()`来唤醒所有等待线程,但这会带来性能问题。
Java—多线程实现生产消费者
|
16天前
|
缓存 安全 算法
Java 多线程 面试题
Java 多线程 相关基础面试题
|
1月前
|
安全 Java Kotlin
Java多线程——synchronized、volatile 保障可见性
Java多线程中,`synchronized` 和 `volatile` 关键字用于保障可见性。`synchronized` 保证原子性、可见性和有序性,通过锁机制确保线程安全;`volatile` 仅保证可见性和有序性,不保证原子性。代码示例展示了如何使用 `synchronized` 和 `volatile` 解决主线程无法感知子线程修改共享变量的问题。总结:`volatile` 确保不同线程对共享变量操作的可见性,使一个线程修改后,其他线程能立即看到最新值。
|
1月前
|
消息中间件 缓存 安全
Java多线程是什么
Java多线程简介:本文介绍了Java中常见的线程池类型,包括`newCachedThreadPool`(适用于短期异步任务)、`newFixedThreadPool`(适用于固定数量的长期任务)、`newScheduledThreadPool`(支持定时和周期性任务)以及`newSingleThreadExecutor`(保证任务顺序执行)。同时,文章还讲解了Java中的锁机制,如`synchronized`关键字、CAS操作及其实现方式,并详细描述了可重入锁`ReentrantLock`和读写锁`ReadWriteLock`的工作原理与应用场景。
|
1月前
|
安全 Java 编译器
深入理解Java中synchronized三种使用方式:助您写出线程安全的代码
`synchronized` 是 Java 中的关键字,用于实现线程同步,确保多个线程互斥访问共享资源。它通过内置的监视器锁机制,防止多个线程同时执行被 `synchronized` 修饰的方法或代码块。`synchronized` 可以修饰非静态方法、静态方法和代码块,分别锁定实例对象、类对象或指定的对象。其底层原理基于 JVM 的指令和对象的监视器,JDK 1.6 后引入了偏向锁、轻量级锁等优化措施,提高了性能。
60 3
|
5月前
|
安全 Java 调度
解锁Java并发编程高阶技能:深入剖析无锁CAS机制、揭秘魔法类Unsafe、精通原子包Atomic,打造高效并发应用
【8月更文挑战第4天】在Java并发编程中,无锁编程以高性能和低延迟应对高并发挑战。核心在于无锁CAS(Compare-And-Swap)机制,它基于硬件支持,确保原子性更新;Unsafe类提供底层内存操作,实现CAS;原子包java.util.concurrent.atomic封装了CAS操作,简化并发编程。通过`AtomicInteger`示例,展现了线程安全的自增操作,突显了这些技术在构建高效并发程序中的关键作用。
83 1
|
2月前
|
存储 安全 Java
Java多线程编程中的并发容器:深入解析与实战应用####
在本文中,我们将探讨Java多线程编程中的一个核心话题——并发容器。不同于传统单一线程环境下的数据结构,并发容器专为多线程场景设计,确保数据访问的线程安全性和高效性。我们将从基础概念出发,逐步深入到`java.util.concurrent`包下的核心并发容器实现,如`ConcurrentHashMap`、`CopyOnWriteArrayList`以及`BlockingQueue`等,通过实例代码演示其使用方法,并分析它们背后的设计原理与适用场景。无论你是Java并发编程的初学者还是希望深化理解的开发者,本文都将为你提供有价值的见解与实践指导。 --- ####
|
2月前
|
存储 设计模式 分布式计算
Java中的多线程编程:并发与并行的深度解析####
在当今软件开发领域,多线程编程已成为提升应用性能、响应速度及资源利用率的关键手段之一。本文将深入探讨Java平台上的多线程机制,从基础概念到高级应用,全面解析并发与并行编程的核心理念、实现方式及其在实际项目中的应用策略。不同于常规摘要的简洁概述,本文旨在通过详尽的技术剖析,为读者构建一个系统化的多线程知识框架,辅以生动实例,让抽象概念具体化,复杂问题简单化。 ####

热门文章

最新文章