必备,前台与后台分离的架构实践

简介: 技术人,谦虚一点,总是没错的。

如果你经历过创业,经历过快速迭代业务,经历过用户量不断上涨,经历过访问并发越来越大,你一定会遇到以下系统问题:

  • 用户访问页面越来越慢
  • 系统性能下降,数据库扛不住,连接数经常打满,最终数据库挂掉,重启后又快速挂掉
  • 改了一个小地方,另外一个看似不相干的地方却挂了,严重耦合

如果你没有经历过,很可能是:

  • 没到这一步项目就死了
  • 身在所谓的大公司,用着所谓先进的架构体系

创业初期遇到上述痛点,很容易想到“三个分离”的架构优化方案:

  • 动静分离:能够100倍以上的提升静态页面/资源的访问速度,详见《必备,动静分离架构实践》
  • 读写分离:能够快速的线性扩充数据库的读性能,详见《必备,读写分离架构实践》
  • 前后分离:前台与后台的数据与访问分离,也就是本文将要重点介绍的内容

一、业务场景介绍

虚拟一个类似于“安居客”租房买房的业务场景,这个业务的数据有两大来源:

  • 用户发布的数据
  • 爬虫从竞对抓取来的数据

这个业务对应的系统有两类使用者:

  • 普通用户,浏览与发布数据,俗称“前台用户”
  • 后台用户,运营与管理数据,俗称“后台用户”

image.png

在一个创业公司,为了快速迭代,系统架构如上:

  • web层:前台web,后台web
  • 任务层:抓取数据
  • 数据层:存储数据

二、数据耦合的问题

系统两类数据源,一类是用户发布的数据,一类是爬虫抓取的数据,两类数据的特点不一样:

  • 自有数据相对结构化,变化少
  • 抓取数据源很多,数据结构变化快

如果将自有数据和抓取数据耦合在一个库里,经常出现的情况是:

  • -> 抓取数据结构变化
  • -> 需要修改数据结构
  • -> 影响前台用户展现
  • -> 经常被动修改前台用户展现逻辑,配合抓取升级

如果经历过这个过程,其中的痛不欲生,是谁都不愿意再次回忆起的。

优化思路:前台展现数据,后台抓取数据分离,解耦。

image.png

如上图所示:

  • 前台展现的稳定数据,库独立
  • 后台抓取的多变数据,库独立
  • 任务层新增一个异步转换的任务

如此这般:

频繁变化的抓取程序,以及抓取的异构数据存储,解耦

前台数据与web都不需要被动配合升级

即使出现问题,前台用户的发布与展现都不影响

三、系统耦合的问题

上面解决了不同数据源写入的耦合问题,再来看看前台与后台用户访问的耦合问题。

用户侧,前台访问的特点是:

  • 访问模式有限
  • 访问量较大,DAU不达到百万都不好意思说是互联网C端产品
  • 对访问时延敏感,用户如果访问慢,立马就流失了
  • 对服务可用性要求高,系统经常用不了,用户还会再来么
  • 对数据一致性的要求高,关乎用户体验的事情就是大事

运营侧,后台访问的特点是:

访问模式多种多样,运营销售各种奇形怪状的,大批量分页的,查询需求

用户量小,访问量小

访问延时不这么敏感,大批量分页,几十秒能出结果,也能接受

对可用性能容忍,系统挂了,10分钟之内重启能回复,也能接受

对一致性的要求始终,晚个30秒的数据,也能接受

image.png

前台和后台的模式与访问需求都不一样,但是,如果前台与后台混用同一套服务和结构化数据,会导致:

  • 后台的低性能访问,对前台用户产生巨大的影响,本质还是耦合

image.png

随着数据量变大,为了保证前台用户的时延,质量,做一些类似与分库分表的升级,数据库一旦变化,可能很多后台的需求难以满足

优化思路:冗余数据,前台与后台服务与数据分离,解耦。

如上图所示:

  • 前台和后台独立服务与数据,解耦
  • 如果出现问题,相互不影响

image.png

  • 通过不同的技术方案,在不同容忍度,业务对系统要求不同的情况下,可以使用不同的技术栈来满足各自的需求,如上图,后台使用ES或者hive在进行数据存储,用以满足“售各种奇形怪状的,大批量分页的,查询需求”

四、总结

创业初期,快速实施架构优化,提升性能的“三大分离”优化利器:

  • 动静分离:能够100倍以上的提升静态页面/资源的访问速度
  • 读写分离:能够快速的线性扩充数据库的读性能
  • 前后分离:前台与后台的数据与访问分离

本文原计划昨天发布的,朋友做免费互联网技术分享,转了他一篇文章,不仅被骂得很惨,还取关了一大片,非常抱歉,也很遗憾。

目录
相关文章
|
2天前
|
弹性计算 Java 关系型数据库
Web应用上云经典架构实践教学
Web应用上云经典架构实践教学
Web应用上云经典架构实践教学
|
17天前
|
运维 监控 Java
后端开发中的微服务架构实践与挑战####
在数字化转型加速的今天,微服务架构凭借其高度的灵活性、可扩展性和可维护性,成为众多企业后端系统构建的首选方案。本文深入探讨了微服务架构的核心概念、实施步骤、关键技术考量以及面临的主要挑战,旨在为开发者提供一份实用的实践指南。通过案例分析,揭示微服务在实际项目中的应用效果,并针对常见问题提出解决策略,帮助读者更好地理解和应对微服务架构带来的复杂性与机遇。 ####
|
17天前
|
算法 NoSQL Java
微服务架构下的接口限流策略与实践#### 一、
本文旨在探讨微服务架构下,面对高并发请求时如何有效实施接口限流策略,以保障系统稳定性和服务质量。不同于传统的摘要概述,本文将从实际应用场景出发,深入剖析几种主流的限流算法(如令牌桶、漏桶及固定窗口计数器等),通过对比分析它们的优缺点,并结合具体案例,展示如何在Spring Cloud Gateway中集成自定义限流方案,实现动态限流规则调整,为读者提供一套可落地的实践指南。 #### 二、
42 3
|
16天前
|
消息中间件 运维 安全
后端开发中的微服务架构实践与挑战####
在数字化转型的浪潮中,微服务架构凭借其高度的灵活性和可扩展性,成为众多企业重构后端系统的首选方案。本文将深入探讨微服务的核心概念、设计原则、关键技术选型及在实际项目实施过程中面临的挑战与解决方案,旨在为开发者提供一套实用的微服务架构落地指南。我们将从理论框架出发,逐步深入至技术细节,最终通过案例分析,揭示如何在复杂业务场景下有效应用微服务,提升系统的整体性能与稳定性。 ####
31 1
|
17天前
|
监控 安全 持续交付
构建高效微服务架构:策略与实践####
在数字化转型的浪潮中,微服务架构凭借其高度解耦、灵活扩展和易于维护的特点,成为现代企业应用开发的首选。本文深入探讨了构建高效微服务架构的关键策略与实战经验,从服务拆分的艺术到通信机制的选择,再到容器化部署与持续集成/持续部署(CI/CD)的实践,旨在为开发者提供一套全面的微服务设计与实现指南。通过具体案例分析,揭示如何避免常见陷阱,优化系统性能,确保系统的高可用性与可扩展性,助力企业在复杂多变的市场环境中保持竞争力。 ####
35 2
|
17天前
|
消息中间件 运维 API
后端开发中的微服务架构实践####
本文深入探讨了微服务架构在后端开发中的应用,从其定义、优势到实际案例分析,全面解析了如何有效实施微服务以提升系统的可维护性、扩展性和灵活性。不同于传统摘要的概述性质,本摘要旨在激发读者对微服务架构深度探索的兴趣,通过提出问题而非直接给出答案的方式,引导读者深入
37 1
|
15天前
|
Cloud Native API 持续交付
云原生架构下的微服务治理策略与实践####
本文旨在探讨云原生环境下微服务架构的治理策略,通过分析当前面临的挑战,提出一系列实用的解决方案。我们将深入讨论如何利用容器化、服务网格(Service Mesh)等先进技术手段,提升微服务系统的可管理性、可扩展性和容错能力。此外,还将分享一些来自一线项目的经验教训,帮助读者更好地理解和应用这些理论到实际工作中去。 ####
34 0
|
16天前
|
弹性计算 API 持续交付
后端服务架构的微服务化转型
本文旨在探讨后端服务从单体架构向微服务架构转型的过程,分析微服务架构的优势和面临的挑战。文章首先介绍单体架构的局限性,然后详细阐述微服务架构的核心概念及其在现代软件开发中的应用。通过对比两种架构,指出微服务化转型的必要性和实施策略。最后,讨论了微服务架构实施过程中可能遇到的问题及解决方案。
|
25天前
|
Cloud Native Devops 云计算
云计算的未来:云原生架构与微服务的革命####
【10月更文挑战第21天】 随着企业数字化转型的加速,云原生技术正迅速成为IT行业的新宠。本文深入探讨了云原生架构的核心理念、关键技术如容器化和微服务的优势,以及如何通过这些技术实现高效、灵活且可扩展的现代应用开发。我们将揭示云原生如何重塑软件开发流程,提升业务敏捷性,并探索其对企业IT架构的深远影响。 ####
40 3
|
1月前
|
Cloud Native 安全 数据安全/隐私保护
云原生架构下的微服务治理与挑战####
随着云计算技术的飞速发展,云原生架构以其高效、灵活、可扩展的特性成为现代企业IT架构的首选。本文聚焦于云原生环境下的微服务治理问题,探讨其在促进业务敏捷性的同时所面临的挑战及应对策略。通过分析微服务拆分、服务间通信、故障隔离与恢复等关键环节,本文旨在为读者提供一个关于如何在云原生环境中有效实施微服务治理的全面视角,助力企业在数字化转型的道路上稳健前行。 ####
下一篇
DataWorks