HanLP-朴素贝叶斯分类预测缺陷

简介: 文章整理自 baiziyu 的知乎专栏,感兴趣的朋友可以去关注下这位大神的专栏,很多关于自然语言处理的文章写的很不错。昨天看到他的分享的两篇关于朴素贝叶斯分类预测的文章,整理了一下分享给给大家,文章已做部分修改!朴素贝叶斯分类时,最好取对数变相乘为相加,防止预测结果溢出。

文章整理自 baiziyu 的知乎专栏,感兴趣的朋友可以去关注下这位大神的专栏,很多关于自然语言处理的文章写的很不错。昨天看到他的分享的两篇关于朴素贝叶斯分类预测的文章,整理了一下分享给给大家,文章已做部分修改!
_

朴素贝叶斯分类时,最好取对数变相乘为相加,防止预测结果溢出。可能出现的badcase就是明明训练语料X类目下没有词语t,而系统就将文本预测为X类目。解决方法就时改相乘为取对数相加。HanLP的朴素贝叶斯分类计算没有用对数相加的方法,而是直接用的概率相乘,很有可能溢出。

对上述内容做一些更正,HanLP的朴素贝叶斯是按照概率取对数相加做的。
看一下下边的代码

@Override

public double[] categorize(Document document) throws IllegalArgumentException, IllegalStateException
{
    Integer category;
    Integer feature;
    Integer occurrences;
    Double logprob;

    double[] predictionScores = new double[model.catalog.length];
    for (Map.Entry<Integer, Double> entry1 : model.logPriors.entrySet())
    {
        category = entry1.getKey();
        logprob = entry1.getValue(); //用类目的对数似然初始化概率

        //对文档中的每个特征
        for (Map.Entry<Integer, int[]> entry2 : document.tfMap.entrySet())
        {
            feature = entry2.getKey();

            if (!model.logLikelihoods.containsKey(feature))
            {
                continue; //如果在模型中找不到就跳过了
            }

            occurrences = entry2.getValue()[0]; //获取其在文档中的频次

            logprob += occurrences * model.logLikelihoods.get(feature).get(category); //将对数似然乘上频次
        }
        predictionScores[category] = logprob;
    }

    if (configProbabilityEnabled) MathUtility.normalizeExp(predictionScores);
    return predictionScores;
}

这么看来,之前遇到的下边的这个badcase就还要再分析
[1] 化验指标一变化患者就六神无主,看医生怎么讲解
核心词:患者 看医生
这里“患者”和“看医生”两个词都没在“艺术”类训练语料中出现,但是预测概率最大的反倒是“艺术”。
由于用PyHanLP没法看到预测概率的计算过程,所以还是把Python的分类预测代码改为Java代码调式看一下。今天移植了预处理,资源加载,人工干预部分的代码,明天把剩余预测部分移植为Java再来看这个badcase。这就是朴素贝叶斯的优势,分析起来非常清晰容易。不过从PyHanLP的预测输出概率值来看,不太像是取了对数相加得到的,因为都是0-1之间的数值,这一看就是概率值。

相关文章
|
机器学习/深度学习 传感器 算法
BES-LSSVM分类预测 | 秃鹰搜索优化最小二乘支持向量机分类预测
BES-LSSVM分类预测 | 秃鹰搜索优化最小二乘支持向量机分类预测
|
7月前
|
机器学习/深度学习 算法
【机器学习】如何使用朴素贝叶斯分类器来处理类别特征?
【5月更文挑战第10天】【机器学习】如何使用朴素贝叶斯分类器来处理类别特征?
|
7月前
|
算法 Python
利用贝叶斯算法对简单应用实现预测分类
利用贝叶斯算法对简单应用实现预测分类
|
7月前
|
机器学习/深度学习 数据采集 算法
支持向量机(SVM)在分类问题中的表现与优化方法
支持向量机(SVM)在分类问题中的表现与优化方法
368 1
|
机器学习/深度学习 自然语言处理 算法
【网安AIGC专题11.1】11 Coreset-C 主动学习:特征选择+11种采样方法+CodeBERT、GraphCodeBERT+多分类(问题分类)二元分类(克隆检测)非分类任务(代码总结)
【网安AIGC专题11.1】11 Coreset-C 主动学习:特征选择+11种采样方法+CodeBERT、GraphCodeBERT+多分类(问题分类)二元分类(克隆检测)非分类任务(代码总结)
207 0
|
机器学习/深度学习 传感器 算法
朴素贝叶斯算法多元分类预测 | Matlab 基于朴素贝叶斯算法(bayesian)的数据分类预测
朴素贝叶斯算法多元分类预测 | Matlab 基于朴素贝叶斯算法(bayesian)的数据分类预测
|
机器学习/深度学习 自然语言处理 算法
机器学习算法(五):基于企鹅数据集的决策树分类预测
机器学习算法(五):基于企鹅数据集的决策树分类预测
|
存储 算法
决策树分类算法(包含隐形眼镜分类的代码)
一个有监督学习算法 、属于判别模型 、非线性分类
158 0
决策树分类算法(包含隐形眼镜分类的代码)
|
算法
基于朴素贝叶斯算法对肿瘤类别分类
基于朴素贝叶斯算法对肿瘤类别分类
197 0
基于朴素贝叶斯算法对肿瘤类别分类
|
机器学习/深度学习 算法 测试技术
统计学习的分类
统计学习的分类
统计学习的分类
下一篇
DataWorks