Spark 通用的性能配置方法:内存和CPU的配置

简介: 前言 本文主要介绍关于通过配置Spark任务运行时的内存和CPU(Vcore)来提升Spark性能的方法。通过配置内存和CPU(Vcore)是比较基础、通用的方法。本文出现的Demo以X-Pack Spark数据工作台为背景介绍,数据工作台的详细介绍请参考:数据工作台。

前言

本文主要介绍关于通过配置Spark任务运行时的内存和CPU(Vcore)来提升Spark性能的方法。通过配置内存和CPU(Vcore)是比较基础、通用的方法。本文出现的Demo以X-Pack Spark数据工作台为背景介绍,数据工作台的详细介绍请参考:数据工作台

提交Spark任务的参数

提交Spark任务时需要提供如下的参数。

--class org.apache.spark.examples.SparkPi
--driver-memory 2G 
--driver-cores 1
--executor-cores 2
--executor-memory 8G
--num-executors 3
--name spark-pi
...

其中下面的参数都是和此次spark任务执行的性能相关。

--driver-memory 2G   //分配给Driver的内存。
--driver-cores 1         // 分配给Driver的Vcore。
--executor-cores 2    //分配给Executor的Vcore。
--executor-memory 8G   //分配给Executor的内存。
--num-executors 3  //分配的Executor的个数。

这些配置会影响spark任务执行的并行度、可用的Vcore和内存,从而影响执行的性能。下面分别看下如何配置这些参数。

并行度

按照上面的配置,此次spark任务的运行并行度为:--executor-cores的值 --num-executors的值,即23=6;也就是说同时最多会有6个task同时执行。
假设此次任务60个task,每个task执行时间为1秒,则此任务运行时间为:60/6*1=10秒;
先把--executor-cores提升为3,--num-executors提升为10,则此任务运行时间为:60/30*1=2秒。
所以增加并行度是提升性能比较常用和直接的方法。

Executor的资源配置

--executor-cores一般设置为2~4比较合适,一般通过和--num-executors组合来提升spark任务的并行度。
--executor-memory内存的配置一般和--executor-cores有一定的比例关系,比例常用的访问为1:2 到1:4之间。可以根据task运行过程GC的情况适当调整。Task运行时的GC情况可以通过Spark Job UI查看,如下图:
Snip20190708_3
其中Duration为task运行的时间,GC Time为task运行的Gc 时间。如果GC时间较长,可以适当增加--executor-memory的值或者减少--executor-cores的值(如果资源不足的话)

Driver的资源配置

--driver-memory和--driver-cores一般设置比较少,2G和1cores也基本共用。但是如果有算子把数据都拉倒Driver上去处理,需要增加--driver-memory的值,不过也建议这么做,因为这样最增加Driver的压力。如果

结束语

本文主要列出最基本的方法,Spark性能的调优时可以结合运行时Spark Job UI 查看每个任务的运行状态进行调优。其他调优方法和参数会陆续推出。
Spark详细配置请参考:Spark Configuration
X-Pack Spark介绍请参考:Spark 基本介绍

相关文章
|
29天前
|
监控 JavaScript 算法
如何使用内存监控工具来定位和解决Node.js应用中的性能问题?
总之,利用内存监控工具结合代码分析和业务理解,能够逐步定位和解决 Node.js 应用中的性能问题,提高应用的运行效率和稳定性。需要耐心和细致地进行排查和优化,不断提升应用的性能表现。
181 77
|
1月前
|
存储 缓存 JavaScript
如何优化Node.js应用的内存使用以提高性能?
通过以上多种方法的综合运用,可以有效地优化 Node.js 应用的内存使用,提高性能,提升用户体验。同时,不断关注内存管理的最新技术和最佳实践,持续改进应用的性能表现。
122 62
|
27天前
|
存储 缓存 监控
如何使用内存监控工具来优化 Node.js 应用的性能
需要注意的是,不同的内存监控工具可能具有不同的功能和特点,在使用时需要根据具体工具的要求和操作指南进行正确使用和分析。
67 31
|
24天前
|
存储 缓存 监控
Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
本文介绍了Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
63 7
|
21天前
|
开发框架 .NET PHP
网站应用项目如何选择阿里云服务器实例规格+内存+CPU+带宽+操作系统等配置
对于使用阿里云服务器的搭建网站的用户来说,面对众多可选的实例规格和配置选项,我们应该如何做出最佳选择,以最大化业务效益并控制成本,成为大家比较关注的问题,如果实例、内存、CPU、带宽等配置选择不合适,可能会影响到自己业务在云服务器上的计算性能及后期运营状况,本文将详细解析企业在搭建网站应用项目时选购阿里云服务器应考虑的一些因素,以供参考。
|
25天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
56 1
|
1月前
|
缓存 Ubuntu Linux
Linux环境下测试服务器的DDR5内存性能
通过使用 `memtester`和 `sysbench`等工具,可以有效地测试Linux环境下服务器的DDR5内存性能。这些工具不仅可以评估内存的读写速度,还可以检测内存中的潜在问题,帮助确保系统的稳定性和性能。通过合理配置和使用这些工具,系统管理员可以深入了解服务器内存的性能状况,为系统优化提供数据支持。
38 4
|
1月前
|
弹性计算 Kubernetes Perl
k8s 设置pod 的cpu 和内存
在 Kubernetes (k8s) 中,设置 Pod 的 CPU 和内存资源限制和请求是非常重要的,因为这有助于确保集群资源的合理分配和有效利用。你可以通过定义 Pod 的 `resources` 字段来设置这些限制。 以下是一个示例 YAML 文件,展示了如何为一个 Pod 设置 CPU 和内存资源请求(requests)和限制(limits): ```yaml apiVersion: v1 kind: Pod metadata: name: example-pod spec: containers: - name: example-container image:
219 1
|
1月前
|
监控 安全 程序员
如何使用内存池池来优化应用程序性能
如何使用内存池池来优化应用程序性能
|
1月前
|
存储 缓存 Java
结构体和类在内存管理方面的差异对程序性能有何影响?
【10月更文挑战第30天】结构体和类在内存管理方面的差异对程序性能有着重要的影响。在实际编程中,需要根据具体的应用场景和性能要求,合理地选择使用结构体或类,以优化程序的性能和内存使用效率。