SSE(和方差、误差平方和):The sum of squares dueto error
MSE(均方差、方差):Meansquared error
RMSE(均方根、标准差):Root mean squared error
R-square(确定系数):Coefficientof determination
Adjusted R-square:Degree-of-freedomadjusted coefficient of determination
下面我对以上几个名词进行详细的解释下,相信能给大家带来一定的帮助!!
一、SSE(和方差)
该统计参数计算的是拟合数据和原始数据对应点的误差的平方和,计算公式如下
SSE越接近于0,说明模型选择和拟合更好,数据预测也越成功。接下来的MSE和RMSE因为和SSE是同出一宗,所以效果一样
二、MSE(均方差)
该统计参数是预测数据和原始数据对应点误差的平方和的均值,也就是SSE/n,和SSE没有太大的区别,计算公式如下
三、RMSE(均方根)
该统计参数,也叫回归系统的拟合标准差,是MSE的平方根,就算公式如下
在这之前,我们所有的误差参数都是基于预测值(y_hat)和原始值(y)之间的误差(即点对点)。从下面开始是所有的误差都是相对原始数据平均值(y_ba)而展开的(即点对全)!!!
RMSE和MAE的比较
量纲一样:都是原始数据中y对应的量纲
RMSE > MAE:
这是一个数学规律,一组正数的平均数的平方,小于每个数的平方和的平均数;
四、R-square(确定系数)
在讲确定系数之前,我们需要介绍另外两个参数SSR和SST,因为确定系数就是由它们两个决定的
(1)SSR:Sumof squares of the regression,即预测数据与原始数据均值之差的平方和,公式如下
(2)SST:Totalsum of squares,即原始数据和均值之差的平方和,公式如下
SST=SSE+SSR,
- 最好的衡量线性回归法的指标:R Squared
准确度:[0, 1],即使分类的问题不同,也可以比较模型应用在不同问题上所体现的优劣;
RMSE和MAE有局限性:同一个算法模型,解决不同的问题,不能体现此模型针对不同问题所表现的优劣。因为不同实际应用中,数据的量纲不同,无法直接比较预测值,因此无法判断模型更适合预测哪个问题。
方案:将预测结果转换为准确度,结果都在[0, 1]之间,针对不同问题的预测准确度,可以比较并来判断此模型更适合预测哪个问题;
1.计算方法
2.对公式的理解
公式
样式与MSE类似,可以理解为一个预测模型,只是该模型与x无关,在机器学习领域称这种模型为基准模型(Baseline Model),适用于所有的线型回归算法;
基准模型问题:因为其没有考虑x的取值,只是很生硬的以为所有的预测样本,其预测结果都是样本均值
A)因此对公式可以这样理解:
分子是我们的模型预测产生的错误,分母是使用y等于y的均值这个模型所产生的错误
自己的模型预测产生的错误 / 基础模型预测生产的错误,表示自己的模型没有拟合住的数据,因此R2可以理解为,自己的模型拟合住的数据
B)公式推理结论:
R2 <= 1
R2越大越好,当自己的预测模型不犯任何错误时:R2 = 1
当我们的模型等于基准模型时:R2 = 0
如果R2 < 0,说明学习到的模型还不如基准模型。 # 注:很可能数据不存在任何线性关系
3. 公式变形
- R2背后具有其它统计意思