Python爬虫入门教程 58-100 python爬虫高级技术之验证码篇4-极验证识别技术之一

简介: 验证码类型今天要搞定的验证码属于现在使用非常多的验证码的一种类型---极验证滑动验证码,关于这个验证码的详细说明查阅他的官网,https://www.geetest.com/ 把验证码做到这个地步,必须点赞了。

验证码类型

今天要搞定的验证码属于现在使用非常多的验证码的一种类型---极验证滑动验证码,关于这个验证码的详细说明查阅他的官网,https://www.geetest.com/ 把验证码做到这个地步,必须点赞了。

image

官网最新效果

官方DEMO最新的效果如下,按照验证码的更新频率,基本博客看完,验证码也更新了,不过套路依旧是相同的,反爬只能增加爬虫编写的成本,并不能完全杜绝爬虫。
20190320112510675

这类验证码,常规解决办法,模拟人为操作,图像比对,查找缺口,移动覆盖缺口。

找个用极验证的网站

今天看新闻,随意找了一下,虎嗅使用的是直接拖拽,没有用最新的点击+拖拽方式,可以直接看一下如何操作。
20190320113026689

这种验证码除了打码平台以外,直接selenium搞起

拼接验证码图片

当你在谷歌浏览器使用F12进行查找元素的时候,随意的去缺口图片上面点击一下,在控制台DOM结构中出现如下代码,有前端经验的童鞋知道,这个使用的是背景局部显示技术,是可以通过这个拼接成一个。

image

注意两个地方:

  1. https://static.geetest.com/pictures/gt/8bc4cb7fa/8bc4cb7fa.webp 图片地址
  2. background-position:后面的坐标
    image

查阅图片之后,发现是一张碎掉的图片,你要做的第一步是将这个图片进行还原,我们通过selenium进行实现。这个地方需要先备注一下图片的尺寸,后面用size = 312x116
image

image

编写自动化代码

使用selenium执行的操作,模拟人的点击行为即可

最初,我们导入一些selenium的基本模块与方法

import time
import re

from selenium import webdriver
from selenium.common.exceptions import TimeoutException
from selenium.webdriver.common.by import By
from selenium.webdriver.support.wait import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.common.action_chains import ActionChains

基本模块的作用如下
webdriver 核心驱动
selenium.common.exceptions 异常类 TimeoutException 超时异常
selenium.webdriver.common.by 按照什么方式进行元素的查找 例如 By.ID,By.ClassName,By.XPATH
selenium.webdriver.support.wait 等待页面加载某些元素
from selenium.webdriver.support import expected_conditions 场景判断用的,一般和上面的等待加载元素一起使用
selenium.webdriver.common.action_chains 鼠标执行的动作链

主方法测试入口

if __name__ == '__main__':
    h = Geek_Huxiu()
    h.run()

构造方法,实现对部分参数的初始化操作

    def __init__(self):
        self.driver = webdriver.Chrome()  
        self.driver.set_window_size(1366,768)

webdriver.Chrome() 启动谷歌浏览器,这个地方需要你提前配置好chromedriver.exe
set_window_size(1366,768) 初始化浏览器大小

核心run方法

    def run(self):
        self.driver.get("https://www.huxiu.com/")  # 打开浏览器
    
        WebDriverWait(self.driver,10).until(EC.element_to_be_clickable((By.XPATH,'//*[@class="js-register"]')))

        reg_element = self.driver.find_element_by_xpath('//*[@class="js-register"]')
        reg_element.click()

        WebDriverWait(self.driver,10).until(EC.element_to_be_clickable((By.XPATH,'//div[@class="gt_slider_knob gt_show"]')))

        # 模拟拖动
        self.analog_drag()

WebDriverWait 方法

说明

driver: 传入WebDriver实例,即我们上例中的driver
timeout: 超时时间,等待的最长时间(同时要考虑隐性等待时间)
poll_frequency: 调用until或until_not中的方法的间隔时间,默认是0.5秒
ignored_exceptions: 忽略的异常,如果在调用until或until_not的过程中抛出这个元组中的异常, 则不中断代码,继续等待;
如果抛出的是这个元组外的异常,则中断代码,抛出异常。默认只有NoSuchElementException。

基本使用方法

WebDriverWait(driver, 超时时长, 调用频率, 忽略异常).until(可执行方法, 超时时返回的信息)

模拟拖动方法

    def analog_drag(self):
        # 鼠标移动到拖动按钮,显示出拖动图片
        element = self.driver.find_element_by_xpath('//div[@class="gt_slider_knob gt_show"]')
        ActionChains(self.driver).move_to_element(element).perform()
        time.sleep(3)


        # 刷新一下极验证图片
        element = self.driver.find_element_by_xpath('//a[@class="gt_refresh_button"]')
        element.click()
        time.sleep(1)

        # 获取图片地址和位置坐标列表
        cut_image_url,cut_location = self.get_image_url('//div[@class="gt_cut_bg_slice"]')

        print(cut_image_url)
        print(cut_location)

行为链

ActionChains(self.driver).move_to_element(element).perform()

模拟人移动鼠标到指定DOM元素

图片处理方法

    def get_image_url(self,xpath):
        link = re.compile('background-image: url\("(.*?)"\); background-position: (.*?)px (.*?)px;')
        elements = self.driver.find_elements_by_xpath(xpath)
        image_url = None

        location = list()

        for element in elements:
            style = element.get_attribute('style')
            groups = link.search(style)

            url = groups[1]
            x_pos = groups[2]
            y_pos = groups[3]
            location.append((int(x_pos), int(y_pos)))
            if not image_url:
                image_url = url
        return image_url, location

使用正则表达式进行匹配的时候,需要将所有的DIV匹配出来 ,采用find_elements_by_xpath 方法,尤其注意elements

WebElement 具备一些常用的方法和属性

  • size:返回元素尺寸
  • text :返回元素文本
  • get_attribute(name):获得属性值
  • is_dispalyed() :该元素是否用户可见

初步运行结果

image

拼接图

看下图,注意一些基本元素,拼接的图片由N个小矩形构成,分为上下两个部分,小矩形的宽度和高度为10x58

核心由上下两部分构成,每部分都是26个小矩形
image

因为,整体宽度为2610 = 260px ,整体高度为582=116px

但是,还记得博客开始的时候,你记录的那个宽度和高度么? 312x116 高度一致,但是宽度出现偏差

312-260 = 52px
52个像素去除以26个矩形,发现每个矩形差2px,这两个像素也就是下面我们拼接图片的重点了

    def splicing_image(self,image_url,location):
        res = requests.get(image_url)
        file = BytesIO(res.content)
        img = Image.open(file)
        image_upper = []
        image_down = []
        for pos in location:
            if pos[1] == 0:
                # y值为0的坐标  属于图片上半部分,高度58
                image_upper.append(img.crop((abs(pos[0]), 0, abs(pos[0]) + 10, 58)))
            else:
                # y值为58的坐标 属于图片上半部分,高度58
                image_down.append(img.crop((abs(pos[0]), 58, abs(pos[0]) + 10, img.height)))
        # 画布的x轴偏移量
        x_offset = 0 
        # 创建一张画布
        new_img = Image.new("RGB", (260, img.height))
        for img in image_upper:
            new_img.paste(img, (x_offset, 58))
            x_offset += img.width

        x_offset = 0
        for img in image_down:
            new_img.paste(img, (x_offset, 0))
            x_offset += img.width

        return new_img

说明

  • requests.get(image_url) 下载图片到本地
  • BytesIO(res.content) 将字节转换成二进制文件流
  • Image.open(file) 获取图片
  • img.crop 裁切图片 left, upper, right, lower
  • Image.new("RGB", (260, img.height)) 创建一个空白的图片,将图片序列中的元素,依次的拼接到里面

最终实现效果

image

图片存储到本地

        # 将图片存储到本地
        cut_image.save("cut.jpg")
        full_image.save("full.jpg")

好了,今天博客就先把图片处理到位,明天着手拼接部分。

相关文章
|
6天前
|
数据采集 存储 XML
Python爬虫定义入门知识
Python爬虫是用于自动化抓取互联网数据的程序。其基本概念包括爬虫、请求、响应和解析。常用库有Requests、BeautifulSoup、Scrapy和Selenium。工作流程包括发送请求、接收响应、解析数据和存储数据。注意事项包括遵守Robots协议、避免过度请求、处理异常和确保数据合法性。Python爬虫强大而灵活,但使用时需遵守法律法规。
|
7天前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
8天前
|
数据采集 Web App开发 监控
高效爬取B站评论:Python爬虫的最佳实践
高效爬取B站评论:Python爬虫的最佳实践
|
9天前
|
数据采集 存储 JSON
Python爬虫开发中的分析与方案制定
Python爬虫开发中的分析与方案制定
|
13天前
|
数据采集 JSON 测试技术
Python爬虫神器requests库的使用
在现代编程中,网络请求是必不可少的部分。本文详细介绍 Python 的 requests 库,一个功能强大且易用的 HTTP 请求库。内容涵盖安装、基本功能(如发送 GET 和 POST 请求、设置请求头、处理响应)、高级功能(如会话管理和文件上传)以及实际应用场景。通过本文,你将全面掌握 requests 库的使用方法。🚀🌟
36 7
|
13天前
|
数据采集 Web App开发 JavaScript
爬虫策略规避:Python爬虫的浏览器自动化
爬虫策略规避:Python爬虫的浏览器自动化
|
13天前
|
数据采集 存储 XML
Python实现网络爬虫自动化:从基础到实践
本文将介绍如何使用Python编写网络爬虫,从最基础的请求与解析,到自动化爬取并处理复杂数据。我们将通过实例展示如何抓取网页内容、解析数据、处理图片文件等常用爬虫任务。
|
3天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
3天前
|
机器学习/深度学习 数据挖掘 Python
Python编程入门——从零开始构建你的第一个程序
【10月更文挑战第39天】本文将带你走进Python的世界,通过简单易懂的语言和实际的代码示例,让你快速掌握Python的基础语法。无论你是编程新手还是想学习新语言的老手,这篇文章都能为你提供有价值的信息。我们将从变量、数据类型、控制结构等基本概念入手,逐步过渡到函数、模块等高级特性,最后通过一个综合示例来巩固所学知识。让我们一起开启Python编程之旅吧!
|
3天前
|
存储 Python
Python编程入门:打造你的第一个程序
【10月更文挑战第39天】在数字时代的浪潮中,掌握编程技能如同掌握了一门新时代的语言。本文将引导你步入Python编程的奇妙世界,从零基础出发,一步步构建你的第一个程序。我们将探索编程的基本概念,通过简单示例理解变量、数据类型和控制结构,最终实现一个简单的猜数字游戏。这不仅是一段代码的旅程,更是逻辑思维和问题解决能力的锻炼之旅。准备好了吗?让我们开始吧!