Python爬虫入门教程 58-100 python爬虫高级技术之验证码篇4-极验证识别技术之一

简介: 验证码类型今天要搞定的验证码属于现在使用非常多的验证码的一种类型---极验证滑动验证码,关于这个验证码的详细说明查阅他的官网,https://www.geetest.com/ 把验证码做到这个地步,必须点赞了。

验证码类型

今天要搞定的验证码属于现在使用非常多的验证码的一种类型---极验证滑动验证码,关于这个验证码的详细说明查阅他的官网,https://www.geetest.com/ 把验证码做到这个地步,必须点赞了。

image

官网最新效果

官方DEMO最新的效果如下,按照验证码的更新频率,基本博客看完,验证码也更新了,不过套路依旧是相同的,反爬只能增加爬虫编写的成本,并不能完全杜绝爬虫。
20190320112510675

这类验证码,常规解决办法,模拟人为操作,图像比对,查找缺口,移动覆盖缺口。

找个用极验证的网站

今天看新闻,随意找了一下,虎嗅使用的是直接拖拽,没有用最新的点击+拖拽方式,可以直接看一下如何操作。
20190320113026689

这种验证码除了打码平台以外,直接selenium搞起

拼接验证码图片

当你在谷歌浏览器使用F12进行查找元素的时候,随意的去缺口图片上面点击一下,在控制台DOM结构中出现如下代码,有前端经验的童鞋知道,这个使用的是背景局部显示技术,是可以通过这个拼接成一个。

image

注意两个地方:

  1. https://static.geetest.com/pictures/gt/8bc4cb7fa/8bc4cb7fa.webp 图片地址
  2. background-position:后面的坐标
    image

查阅图片之后,发现是一张碎掉的图片,你要做的第一步是将这个图片进行还原,我们通过selenium进行实现。这个地方需要先备注一下图片的尺寸,后面用size = 312x116
image

image

编写自动化代码

使用selenium执行的操作,模拟人的点击行为即可

最初,我们导入一些selenium的基本模块与方法

import time
import re

from selenium import webdriver
from selenium.common.exceptions import TimeoutException
from selenium.webdriver.common.by import By
from selenium.webdriver.support.wait import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.common.action_chains import ActionChains

基本模块的作用如下
webdriver 核心驱动
selenium.common.exceptions 异常类 TimeoutException 超时异常
selenium.webdriver.common.by 按照什么方式进行元素的查找 例如 By.ID,By.ClassName,By.XPATH
selenium.webdriver.support.wait 等待页面加载某些元素
from selenium.webdriver.support import expected_conditions 场景判断用的,一般和上面的等待加载元素一起使用
selenium.webdriver.common.action_chains 鼠标执行的动作链

主方法测试入口

if __name__ == '__main__':
    h = Geek_Huxiu()
    h.run()

构造方法,实现对部分参数的初始化操作

    def __init__(self):
        self.driver = webdriver.Chrome()  
        self.driver.set_window_size(1366,768)

webdriver.Chrome() 启动谷歌浏览器,这个地方需要你提前配置好chromedriver.exe
set_window_size(1366,768) 初始化浏览器大小

核心run方法

    def run(self):
        self.driver.get("https://www.huxiu.com/")  # 打开浏览器
    
        WebDriverWait(self.driver,10).until(EC.element_to_be_clickable((By.XPATH,'//*[@class="js-register"]')))

        reg_element = self.driver.find_element_by_xpath('//*[@class="js-register"]')
        reg_element.click()

        WebDriverWait(self.driver,10).until(EC.element_to_be_clickable((By.XPATH,'//div[@class="gt_slider_knob gt_show"]')))

        # 模拟拖动
        self.analog_drag()

WebDriverWait 方法

说明

driver: 传入WebDriver实例,即我们上例中的driver
timeout: 超时时间,等待的最长时间(同时要考虑隐性等待时间)
poll_frequency: 调用until或until_not中的方法的间隔时间,默认是0.5秒
ignored_exceptions: 忽略的异常,如果在调用until或until_not的过程中抛出这个元组中的异常, 则不中断代码,继续等待;
如果抛出的是这个元组外的异常,则中断代码,抛出异常。默认只有NoSuchElementException。

基本使用方法

WebDriverWait(driver, 超时时长, 调用频率, 忽略异常).until(可执行方法, 超时时返回的信息)

模拟拖动方法

    def analog_drag(self):
        # 鼠标移动到拖动按钮,显示出拖动图片
        element = self.driver.find_element_by_xpath('//div[@class="gt_slider_knob gt_show"]')
        ActionChains(self.driver).move_to_element(element).perform()
        time.sleep(3)


        # 刷新一下极验证图片
        element = self.driver.find_element_by_xpath('//a[@class="gt_refresh_button"]')
        element.click()
        time.sleep(1)

        # 获取图片地址和位置坐标列表
        cut_image_url,cut_location = self.get_image_url('//div[@class="gt_cut_bg_slice"]')

        print(cut_image_url)
        print(cut_location)

行为链

ActionChains(self.driver).move_to_element(element).perform()

模拟人移动鼠标到指定DOM元素

图片处理方法

    def get_image_url(self,xpath):
        link = re.compile('background-image: url\("(.*?)"\); background-position: (.*?)px (.*?)px;')
        elements = self.driver.find_elements_by_xpath(xpath)
        image_url = None

        location = list()

        for element in elements:
            style = element.get_attribute('style')
            groups = link.search(style)

            url = groups[1]
            x_pos = groups[2]
            y_pos = groups[3]
            location.append((int(x_pos), int(y_pos)))
            if not image_url:
                image_url = url
        return image_url, location

使用正则表达式进行匹配的时候,需要将所有的DIV匹配出来 ,采用find_elements_by_xpath 方法,尤其注意elements

WebElement 具备一些常用的方法和属性

  • size:返回元素尺寸
  • text :返回元素文本
  • get_attribute(name):获得属性值
  • is_dispalyed() :该元素是否用户可见

初步运行结果

image

拼接图

看下图,注意一些基本元素,拼接的图片由N个小矩形构成,分为上下两个部分,小矩形的宽度和高度为10x58

核心由上下两部分构成,每部分都是26个小矩形
image

因为,整体宽度为2610 = 260px ,整体高度为582=116px

但是,还记得博客开始的时候,你记录的那个宽度和高度么? 312x116 高度一致,但是宽度出现偏差

312-260 = 52px
52个像素去除以26个矩形,发现每个矩形差2px,这两个像素也就是下面我们拼接图片的重点了

    def splicing_image(self,image_url,location):
        res = requests.get(image_url)
        file = BytesIO(res.content)
        img = Image.open(file)
        image_upper = []
        image_down = []
        for pos in location:
            if pos[1] == 0:
                # y值为0的坐标  属于图片上半部分,高度58
                image_upper.append(img.crop((abs(pos[0]), 0, abs(pos[0]) + 10, 58)))
            else:
                # y值为58的坐标 属于图片上半部分,高度58
                image_down.append(img.crop((abs(pos[0]), 58, abs(pos[0]) + 10, img.height)))
        # 画布的x轴偏移量
        x_offset = 0 
        # 创建一张画布
        new_img = Image.new("RGB", (260, img.height))
        for img in image_upper:
            new_img.paste(img, (x_offset, 58))
            x_offset += img.width

        x_offset = 0
        for img in image_down:
            new_img.paste(img, (x_offset, 0))
            x_offset += img.width

        return new_img

说明

  • requests.get(image_url) 下载图片到本地
  • BytesIO(res.content) 将字节转换成二进制文件流
  • Image.open(file) 获取图片
  • img.crop 裁切图片 left, upper, right, lower
  • Image.new("RGB", (260, img.height)) 创建一个空白的图片,将图片序列中的元素,依次的拼接到里面

最终实现效果

image

图片存储到本地

        # 将图片存储到本地
        cut_image.save("cut.jpg")
        full_image.save("full.jpg")

好了,今天博客就先把图片处理到位,明天着手拼接部分。

相关文章
|
9天前
|
API Python
【02】优雅草央央逆向技术篇之逆向接口协议篇-以小红书为例-python逆向小红书将用户名转换获得为uid-优雅草央千澈
【02】优雅草央央逆向技术篇之逆向接口协议篇-以小红书为例-python逆向小红书将用户名转换获得为uid-优雅草央千澈
|
2月前
|
数据采集 监控 数据库
爬虫技术详解:从原理到实践
本文详细介绍了爬虫技术,从基本概念到实际操作,涵盖爬虫定义、工作流程及Python实现方法。通过使用`requests`和`BeautifulSoup`库,演示了如何发送请求、解析响应、提取和保存数据,适合初学者学习。强调了遵守法律法规的重要性。
378 4
|
1月前
|
数据采集 搜索推荐 数据安全/隐私保护
Referer头部在网站反爬虫技术中的运用
Referer头部在网站反爬虫技术中的运用
|
2月前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
139 6
|
10天前
|
安全 数据挖掘 编译器
【01】优雅草央央逆向技术篇之逆向接口协议篇-如何用python逆向接口协议?python逆向接口协议的原理和步骤-优雅草央千澈
【01】优雅草央央逆向技术篇之逆向接口协议篇-如何用python逆向接口协议?python逆向接口协议的原理和步骤-优雅草央千澈
|
21天前
|
数据采集 存储 缓存
如何使用缓存技术提升Python爬虫效率
如何使用缓存技术提升Python爬虫效率
|
30天前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
80 2
|
1月前
|
数据采集 存储 JavaScript
网页爬虫技术全解析:从基础到实战
在信息爆炸的时代,网页爬虫作为数据采集的重要工具,已成为数据科学家、研究人员和开发者不可或缺的技术。本文全面解析网页爬虫的基础概念、工作原理、技术栈与工具,以及实战案例,探讨其合法性与道德问题,分享爬虫设计与实现的详细步骤,介绍优化与维护的方法,应对反爬虫机制、动态内容加载等挑战,旨在帮助读者深入理解并合理运用网页爬虫技术。
|
24天前
|
数据采集 安全 API
高级技术文章:使用 Kotlin 和 Unirest 构建高效的 Facebook 图像爬虫
高级技术文章:使用 Kotlin 和 Unirest 构建高效的 Facebook 图像爬虫
|
2月前
|
数据可视化 图形学 Python
在圆的外面画一个正方形:Python实现与技术解析
本文介绍了如何使用Python的`matplotlib`库绘制一个圆,并在其外部绘制一个正方形。通过计算正方形的边长和顶点坐标,实现了圆和正方形的精确对齐。代码示例详细展示了绘制过程,适合初学者学习和实践。
55 9