Python爬虫入门教程 58-100 python爬虫高级技术之验证码篇4-极验证识别技术之一

简介: 验证码类型今天要搞定的验证码属于现在使用非常多的验证码的一种类型---极验证滑动验证码,关于这个验证码的详细说明查阅他的官网,https://www.geetest.com/ 把验证码做到这个地步,必须点赞了。

验证码类型

今天要搞定的验证码属于现在使用非常多的验证码的一种类型---极验证滑动验证码,关于这个验证码的详细说明查阅他的官网,https://www.geetest.com/ 把验证码做到这个地步,必须点赞了。

image

官网最新效果

官方DEMO最新的效果如下,按照验证码的更新频率,基本博客看完,验证码也更新了,不过套路依旧是相同的,反爬只能增加爬虫编写的成本,并不能完全杜绝爬虫。
20190320112510675

这类验证码,常规解决办法,模拟人为操作,图像比对,查找缺口,移动覆盖缺口。

找个用极验证的网站

今天看新闻,随意找了一下,虎嗅使用的是直接拖拽,没有用最新的点击+拖拽方式,可以直接看一下如何操作。
20190320113026689

这种验证码除了打码平台以外,直接selenium搞起

拼接验证码图片

当你在谷歌浏览器使用F12进行查找元素的时候,随意的去缺口图片上面点击一下,在控制台DOM结构中出现如下代码,有前端经验的童鞋知道,这个使用的是背景局部显示技术,是可以通过这个拼接成一个。

image

注意两个地方:

  1. https://static.geetest.com/pictures/gt/8bc4cb7fa/8bc4cb7fa.webp 图片地址
  2. background-position:后面的坐标
    image

查阅图片之后,发现是一张碎掉的图片,你要做的第一步是将这个图片进行还原,我们通过selenium进行实现。这个地方需要先备注一下图片的尺寸,后面用size = 312x116
image

image

编写自动化代码

使用selenium执行的操作,模拟人的点击行为即可

最初,我们导入一些selenium的基本模块与方法

import time
import re

from selenium import webdriver
from selenium.common.exceptions import TimeoutException
from selenium.webdriver.common.by import By
from selenium.webdriver.support.wait import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.common.action_chains import ActionChains

基本模块的作用如下
webdriver 核心驱动
selenium.common.exceptions 异常类 TimeoutException 超时异常
selenium.webdriver.common.by 按照什么方式进行元素的查找 例如 By.ID,By.ClassName,By.XPATH
selenium.webdriver.support.wait 等待页面加载某些元素
from selenium.webdriver.support import expected_conditions 场景判断用的,一般和上面的等待加载元素一起使用
selenium.webdriver.common.action_chains 鼠标执行的动作链

主方法测试入口

if __name__ == '__main__':
    h = Geek_Huxiu()
    h.run()

构造方法,实现对部分参数的初始化操作

    def __init__(self):
        self.driver = webdriver.Chrome()  
        self.driver.set_window_size(1366,768)

webdriver.Chrome() 启动谷歌浏览器,这个地方需要你提前配置好chromedriver.exe
set_window_size(1366,768) 初始化浏览器大小

核心run方法

    def run(self):
        self.driver.get("https://www.huxiu.com/")  # 打开浏览器
    
        WebDriverWait(self.driver,10).until(EC.element_to_be_clickable((By.XPATH,'//*[@class="js-register"]')))

        reg_element = self.driver.find_element_by_xpath('//*[@class="js-register"]')
        reg_element.click()

        WebDriverWait(self.driver,10).until(EC.element_to_be_clickable((By.XPATH,'//div[@class="gt_slider_knob gt_show"]')))

        # 模拟拖动
        self.analog_drag()

WebDriverWait 方法

说明

driver: 传入WebDriver实例,即我们上例中的driver
timeout: 超时时间,等待的最长时间(同时要考虑隐性等待时间)
poll_frequency: 调用until或until_not中的方法的间隔时间,默认是0.5秒
ignored_exceptions: 忽略的异常,如果在调用until或until_not的过程中抛出这个元组中的异常, 则不中断代码,继续等待;
如果抛出的是这个元组外的异常,则中断代码,抛出异常。默认只有NoSuchElementException。

基本使用方法

WebDriverWait(driver, 超时时长, 调用频率, 忽略异常).until(可执行方法, 超时时返回的信息)

模拟拖动方法

    def analog_drag(self):
        # 鼠标移动到拖动按钮,显示出拖动图片
        element = self.driver.find_element_by_xpath('//div[@class="gt_slider_knob gt_show"]')
        ActionChains(self.driver).move_to_element(element).perform()
        time.sleep(3)


        # 刷新一下极验证图片
        element = self.driver.find_element_by_xpath('//a[@class="gt_refresh_button"]')
        element.click()
        time.sleep(1)

        # 获取图片地址和位置坐标列表
        cut_image_url,cut_location = self.get_image_url('//div[@class="gt_cut_bg_slice"]')

        print(cut_image_url)
        print(cut_location)

行为链

ActionChains(self.driver).move_to_element(element).perform()

模拟人移动鼠标到指定DOM元素

图片处理方法

    def get_image_url(self,xpath):
        link = re.compile('background-image: url\("(.*?)"\); background-position: (.*?)px (.*?)px;')
        elements = self.driver.find_elements_by_xpath(xpath)
        image_url = None

        location = list()

        for element in elements:
            style = element.get_attribute('style')
            groups = link.search(style)

            url = groups[1]
            x_pos = groups[2]
            y_pos = groups[3]
            location.append((int(x_pos), int(y_pos)))
            if not image_url:
                image_url = url
        return image_url, location

使用正则表达式进行匹配的时候,需要将所有的DIV匹配出来 ,采用find_elements_by_xpath 方法,尤其注意elements

WebElement 具备一些常用的方法和属性

  • size:返回元素尺寸
  • text :返回元素文本
  • get_attribute(name):获得属性值
  • is_dispalyed() :该元素是否用户可见

初步运行结果

image

拼接图

看下图,注意一些基本元素,拼接的图片由N个小矩形构成,分为上下两个部分,小矩形的宽度和高度为10x58

核心由上下两部分构成,每部分都是26个小矩形
image

因为,整体宽度为2610 = 260px ,整体高度为582=116px

但是,还记得博客开始的时候,你记录的那个宽度和高度么? 312x116 高度一致,但是宽度出现偏差

312-260 = 52px
52个像素去除以26个矩形,发现每个矩形差2px,这两个像素也就是下面我们拼接图片的重点了

    def splicing_image(self,image_url,location):
        res = requests.get(image_url)
        file = BytesIO(res.content)
        img = Image.open(file)
        image_upper = []
        image_down = []
        for pos in location:
            if pos[1] == 0:
                # y值为0的坐标  属于图片上半部分,高度58
                image_upper.append(img.crop((abs(pos[0]), 0, abs(pos[0]) + 10, 58)))
            else:
                # y值为58的坐标 属于图片上半部分,高度58
                image_down.append(img.crop((abs(pos[0]), 58, abs(pos[0]) + 10, img.height)))
        # 画布的x轴偏移量
        x_offset = 0 
        # 创建一张画布
        new_img = Image.new("RGB", (260, img.height))
        for img in image_upper:
            new_img.paste(img, (x_offset, 58))
            x_offset += img.width

        x_offset = 0
        for img in image_down:
            new_img.paste(img, (x_offset, 0))
            x_offset += img.width

        return new_img

说明

  • requests.get(image_url) 下载图片到本地
  • BytesIO(res.content) 将字节转换成二进制文件流
  • Image.open(file) 获取图片
  • img.crop 裁切图片 left, upper, right, lower
  • Image.new("RGB", (260, img.height)) 创建一个空白的图片,将图片序列中的元素,依次的拼接到里面

最终实现效果

image

图片存储到本地

        # 将图片存储到本地
        cut_image.save("cut.jpg")
        full_image.save("full.jpg")

好了,今天博客就先把图片处理到位,明天着手拼接部分。

相关文章
|
6天前
|
数据采集 供应链 API
Python爬虫与1688图片搜索API接口:深度解析与显著收益
在电子商务领域,数据是驱动业务决策的核心。阿里巴巴旗下的1688平台作为全球领先的B2B市场,提供了丰富的API接口,特别是图片搜索API(`item_search_img`),允许开发者通过上传图片搜索相似商品。本文介绍如何结合Python爬虫技术高效利用该接口,提升搜索效率和用户体验,助力企业实现自动化商品搜索、库存管理优化、竞品监控与定价策略调整等,显著提高运营效率和市场竞争力。
31 3
|
17天前
|
数据采集 存储 缓存
如何使用缓存技术提升Python爬虫效率
如何使用缓存技术提升Python爬虫效率
|
18天前
|
数据采集 Web App开发 监控
Python爬虫:爱奇艺榜单数据的实时监控
Python爬虫:爱奇艺榜单数据的实时监控
|
27天前
|
数据采集 JSON API
如何利用Python爬虫淘宝商品详情高级版(item_get_pro)API接口及返回值解析说明
本文介绍了如何利用Python爬虫技术调用淘宝商品详情高级版API接口(item_get_pro),获取商品的详细信息,包括标题、价格、销量等。文章涵盖了环境准备、API权限申请、请求构建和返回值解析等内容,强调了数据获取的合规性和安全性。
|
1月前
|
数据采集 存储 API
利用Python爬虫获取1688关键词接口全攻略
本文介绍如何使用Python爬虫技术合法合规地获取1688关键词接口数据,包括环境准备、注册1688开发者账号、获取Access Token、构建请求URL、发送API请求、解析HTML及数据处理存储等步骤,强调遵守法律法规和合理使用爬虫技术的重要性。
|
1月前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
1月前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
27天前
|
Unix Linux 程序员
[oeasy]python053_学编程为什么从hello_world_开始
视频介绍了“Hello World”程序的由来及其在编程中的重要性。从贝尔实验室诞生的Unix系统和C语言说起,讲述了“Hello World”作为经典示例的起源和流传过程。文章还探讨了C语言对其他编程语言的影响,以及它在系统编程中的地位。最后总结了“Hello World”、print、小括号和双引号等编程概念的来源。
107 80
|
2月前
|
存储 索引 Python
Python编程数据结构的深入理解
深入理解 Python 中的数据结构是提高编程能力的重要途径。通过合理选择和使用数据结构,可以提高程序的效率和质量
158 59
|
16天前
|
Python
[oeasy]python055_python编程_容易出现的问题_函数名的重新赋值_print_int
本文介绍了Python编程中容易出现的问题,特别是函数名、类名和模块名的重新赋值。通过具体示例展示了将内建函数(如`print`、`int`、`max`)或模块名(如`os`)重新赋值为其他类型后,会导致原有功能失效。例如,将`print`赋值为整数后,无法再用其输出内容;将`int`赋值为整数后,无法再进行类型转换。重新赋值后,这些名称失去了原有的功能,可能导致程序错误。总结指出,已有的函数名、类名和模块名不适合覆盖赋新值,否则会失去原有功能。如果需要使用类似的变量名,建议采用其他命名方式以避免冲突。
34 14