scrapy 编写扩展 (八)

简介: 在scrapy使用过程中,很多情况下需要根据实际需求定制自己的扩展,小到实现自己的pipelines,大到用新的scheduler替换默认的scheduler。 扩展可以按照是否需要读取crawler大致分为两种,对于不需要读取的,比如pipelines的编写,只需要实现默认的方法porcess_item。需要读取的,如scheduler的编写又存在另外的方式。 1.第一种

在scrapy使用过程中,很多情况下需要根据实际需求定制自己的扩展,小到实现自己的pipelines,大到用新的scheduler替换默认的scheduler。

扩展可以按照是否需要读取crawler大致分为两种,对于不需要读取的,比如pipelines的编写,只需要实现默认的方法porcess_item。需要读取的,如scheduler的编写又存在另外的方式。

1.第一种

这种处理起来比较简单,一般是根据scrapy的signals实现相应的处理。具体实现可见文档pipelines的编写方法。

2.第二种

(1)区别:

这种方式和第一种的主要区别是需要使用crawler内部信息,比如接收内部信号,如signals.spider_opened等。还体现在对设置setting.py的是否需要读取上。

(2)实现:

i)读取设置一般通过from_settings函数实现。一下是scrapy-redis中scheduler的from_settings的实现方法:
def from_settings(cls, settings):
        persist = settings.get('SCHEDULER_PERSIST', SCHEDULER_PERSIST)
        queue_key = settings.get('SCHEDULER_QUEUE_KEY', QUEUE_KEY)
        queue_cls = load_object(settings.get('SCHEDULER_QUEUE_CLASS', QUEUE_CLASS))
        dupefilter_key = settings.get('DUPEFILTER_KEY', DUPEFILTER_KEY)
        idle_before_close = settings.get('SCHEDULER_IDLE_BEFORE_CLOSE', IDLE_BEFORE_CLOSE)
        server = connection.from_settings(settings)
        return cls(server, persist, queue_key, queue_cls, dupefilter_key, idle_before_close)
ii)from_crawler()
Scrapy API的主要入口是 Crawler 的实例对象, 通过类方法 from_crawler 将它传递给扩展(extensions)。 该对象提供对所有Scrapy核心组件的访问, 也是扩展访问Scrapy核心组件和挂载功能到Scrapy的唯一途径。
实现例子如下:
def from_crawler(cls, crawler):
        instance = cls.from_settings(crawler.settings)
        return instance
iii)其它函数

想pipelines中的process_item一样,有些函数是此类型组建所必需的,整个框架在执行时会使用到次函数,所以必须加以实现。如scheduler中的enqueue_request、next_request等函数。

最难处理的也是第iii种,这需要全局了解scrapy运行逻辑,函数调用关系等。比较简单的方式是按照原组件的函数功能,函数返回值等根据自己编写的扩展的功能重新实现。就是照葫芦画瓢。

scrapy内data stream在其文档的架构上已经说明,但是转化到代码上好难找啊。

其它:

探索的提高效率的py-charm操作:

ctrl+shift+f可以全局查找字符的出现。右上角的放大镜貌似只能找函数。

目录
相关文章
|
数据采集 存储 中间件
Scrapy,作为一款强大的Python网络爬虫框架,凭借其高效、灵活、易扩展的特性,深受开发者的喜爱
【6月更文挑战第10天】Scrapy是Python的高效爬虫框架,以其异步处理、多线程及中间件机制提升爬取效率。它提供丰富组件和API,支持灵活的数据抓取、清洗、存储,可扩展到各种数据库。通过自定义组件,Scrapy能适应动态网页和应对反爬策略,同时与数据分析库集成进行复杂分析。但需注意遵守法律法规和道德规范,以合法合规的方式进行爬虫开发。随着技术发展,Scrapy在数据收集领域将持续发挥关键作用。
308 4
|
数据采集 调度 Python
Python爬虫:Scrapy的Crawler对象及扩展Extensions和信号Signa
Python爬虫:Scrapy的Crawler对象及扩展Extensions和信号Signa
508 0
|
8月前
|
数据采集 前端开发 JavaScript
Scrapy结合Selenium实现搜索点击爬虫的最佳实践
Scrapy结合Selenium实现搜索点击爬虫的最佳实践
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
546 6
|
7月前
|
数据采集 存储 监控
Scrapy框架下地图爬虫的进度监控与优化策略
Scrapy框架下地图爬虫的进度监控与优化策略
|
数据采集 中间件 开发者
Scrapy爬虫框架-自定义中间件
Scrapy爬虫框架-自定义中间件
216 1
|
数据采集 中间件 Python
Scrapy爬虫框架-通过Cookies模拟自动登录
Scrapy爬虫框架-通过Cookies模拟自动登录
422 0
|
数据采集 中间件 Python
Scrapy爬虫:利用代理服务器爬取热门网站数据
Scrapy爬虫:利用代理服务器爬取热门网站数据
|
数据采集 前端开发 中间件
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第26天】Python是一种强大的编程语言,在数据抓取和网络爬虫领域应用广泛。Scrapy作为高效灵活的爬虫框架,为开发者提供了强大的工具集。本文通过实战案例,详细解析Scrapy框架的应用与技巧,并附上示例代码。文章介绍了Scrapy的基本概念、创建项目、编写简单爬虫、高级特性和技巧等内容。
545 4
|
数据采集 中间件 API
在Scrapy爬虫中应用Crawlera进行反爬虫策略
在Scrapy爬虫中应用Crawlera进行反爬虫策略