秒杀系统架构优化思路

简介: 《秒杀系统架构优化思路》 上周参加Qcon,有个兄弟分享秒杀系统的优化,其观点有些赞同,大部分观点却并不同意,结合自己的经验,谈谈自己的一些看法。 一、为什么难 秒杀系统难做的原因:库存只有一份,所有人会在集中的时间读和写这些数据。 例如小米手机每周二的秒杀,可能手机只有1万部,但瞬时进入的流量可能是几百几千万。 又例如12306抢票,亦与秒杀类似,瞬时流量更甚。

《秒杀系统架构优化思路》

上周参加Qcon,有个兄弟分享秒杀系统的优化,其观点有些赞同,大部分观点却并不同意,结合自己的经验,谈谈自己的一些看法。

一、为什么难
秒杀系统难做的原因:库存只有一份,所有人会在集中的时间读和写这些数据。
例如小米手机每周二的秒杀,可能手机只有1万部,但瞬时进入的流量可能是几百几千万。
又例如12306抢票,亦与秒杀类似,瞬时流量更甚。

二、常见架构

流量到了亿级别,常见站点架构如上:
1)浏览器端,最上层,会执行到一些JS代码
2)站点层,这一层会访问后端数据,拼html页面返回给浏览器
3)服务层,向上游屏蔽底层数据细节
4)数据层,最终的库存是存在这里的,mysql是一个典型

三、优化方向
1)
将请求尽量拦截在系统上游:传统秒杀系统之所以挂,请求都压倒了后端数据层,数据读写锁冲突严重,并发高响应慢,几乎所有请求都超时,流量虽大,下单成功的有效流量甚小【一趟火车其实只有2000张票,200w个人来买,基本没有人能买成功,请求有效率为0】
2)充分利用缓存:这是一个典型的读多写少的应用场景【一趟火车其实只有2000张票,200w个人来买,最多2000个人下单成功,其他人都是查询库存,写比例只有0.1%,读比例占99.9%】,非常适合使用缓存

四、优化细节
4.1)浏览器层请求拦截
点击了“查询”按钮之后,系统那个卡呀,进度条涨的慢呀,作为用户,我会不自觉的再去点击“查询”,继续点,继续点,点点点。。。有用么?平白无故的增加了系统负载(一个用户点5次,80%的请求是这么多出来的),怎么整?
a)产品层面,用户点击“查询”或者“购票”后,按钮置灰,禁止用户重复提交请求
b)JS层面,限制用户在x秒之内只能提交一次请求
如此限流,80%流量已拦。

4.2)站点层请求拦截与页面缓存
浏览器层的请求拦截,只能拦住小白用户(不过这是99%的用户哟),高端的程序员根本不吃这一套,写个for循环,直接调用你后端的http请求,怎么整?
a)同一个uid,限制访问频度,做页面缓存,x秒内到达站点层的请求,均返回同一页面
b)同一个item的查询,例如手机车次,做页面缓存,x秒内到达站点层的请求,均返回同一页面
如此限流,又有99%的流量会被拦截在站点层

4.3)服务层请求拦截与数据缓存
站点层的请求拦截,只能拦住普通程序员,高级黑客,假设他控制了10w台肉鸡(并且假设买票不需要实名认证),这下uid的限制不行了吧?怎么整?
a)大哥,我是服务层,我清楚的知道小米只有1万部手机,我清楚的知道一列火车只有2000张车票,我透10w个请求去数据库有什么意义呢?对于写请求,做请求队列,每次只透有限的写请求去数据层,如果均成功再放下一批,如果库存不够则队列里的写请求全部返回“已售完”
b)对于读请求,还要我说么?cache抗,不管是memcached还是redis,单机抗个每秒10w应该都是没什么问题的
如此限流,只有非常少的写请求,和非常少的读缓存mis的请求会透到数据层去,又有99.9%的请求被拦住了

4.4)数据层闲庭信步
到了数据这一层,几乎就没有什么请求了,单机也能扛得住,还是那句话,库存是有限的,小米的产能有限,透这么多请求来数据库没有意义。

五、总结
没什么总结了,上文应该描述的非常清楚了,对于秒杀系统,再次重复下笔者的两个架构优化思路:
1)尽量将请求拦截在系统上游
2)读多写少的常用多使用缓存

目录
相关文章
|
1月前
|
消息中间件 存储 缓存
十万订单每秒热点数据架构优化实践深度解析
【11月更文挑战第20天】随着互联网技术的飞速发展,电子商务平台在高峰时段需要处理海量订单,这对系统的性能、稳定性和扩展性提出了极高的要求。尤其是在“双十一”、“618”等大型促销活动中,每秒需要处理数万甚至数十万笔订单,这对系统的热点数据处理能力构成了严峻挑战。本文将深入探讨如何优化架构以应对每秒十万订单级别的热点数据处理,从历史背景、功能点、业务场景、底层原理以及使用Java模拟示例等多个维度进行剖析。
55 8
|
14天前
|
弹性计算 运维 监控
阿里云云服务诊断工具:合作伙伴架构师的深度洞察与优化建议
作为阿里云的合作伙伴架构师,我深入体验了其云服务诊断工具,该工具通过实时监控与历史趋势分析,自动化检查并提供详细的诊断报告,极大提升了运维效率和系统稳定性,特别在处理ECS实例资源不可用等问题时表现突出。此外,它支持预防性维护,帮助识别潜在问题,减少业务中断。尽管如此,仍建议增强诊断效能、扩大云产品覆盖范围、提供自定义诊断选项、加强教育与培训资源、集成第三方工具,以进一步提升用户体验。
662 243
|
7天前
|
机器学习/深度学习 算法 数据可视化
基于深度混合架构的智能量化交易系统研究: 融合SSDA与LSTM自编码器的特征提取与决策优化方法
本文探讨了在量化交易中结合时序特征和静态特征的混合建模方法。通过整合堆叠稀疏降噪自编码器(SSDA)和基于LSTM的自编码器(LSTM-AE),构建了一个能够全面捕捉市场动态特性的交易系统。SSDA通过降噪技术提取股票数据的鲁棒表示,LSTM-AE则专注于捕捉市场的时序依赖关系。系统采用A2C算法进行强化学习,通过多维度的奖励计算机制,实现了在可接受的风险水平下最大化收益的目标。实验结果显示,该系统在不同波动特征的股票上表现出差异化的适应能力,特别是在存在明确市场趋势的情况下,决策准确性较高。
31 5
基于深度混合架构的智能量化交易系统研究: 融合SSDA与LSTM自编码器的特征提取与决策优化方法
|
18天前
|
存储 机器学习/深度学习 人工智能
【AI系统】计算图优化架构
本文介绍了推理引擎转换中的图优化模块,涵盖算子融合、布局转换、算子替换及内存优化等技术,旨在提升模型推理效率。计算图优化技术通过减少计算冗余、提高计算效率和减少内存占用,显著改善模型在资源受限设备上的运行表现。文中详细探讨了离线优化模块面临的挑战及解决方案,包括结构冗余、精度冗余、算法冗余和读写冗余的处理方法。此外,文章还介绍了ONNX Runtime的图优化机制及其在实际应用中的实现,展示了如何通过图优化提高模型推理性能的具体示例。
48 4
【AI系统】计算图优化架构
|
8天前
|
机器学习/深度学习 前端开发 算法
婚恋交友系统平台 相亲交友平台系统 婚恋交友系统APP 婚恋系统源码 婚恋交友平台开发流程 婚恋交友系统架构设计 婚恋交友系统前端/后端开发 婚恋交友系统匹配推荐算法优化
婚恋交友系统平台通过线上互动帮助单身男女找到合适伴侣,提供用户注册、个人资料填写、匹配推荐、实时聊天、社区互动等功能。开发流程包括需求分析、技术选型、系统架构设计、功能实现、测试优化和上线运维。匹配推荐算法优化是核心,通过用户行为数据分析和机器学习提高匹配准确性。
37 3
|
26天前
|
监控 Serverless 云计算
探索Serverless架构:开发实践与优化策略
本文深入探讨了Serverless架构的核心概念、开发实践及优化策略。Serverless让开发者无需管理服务器即可运行代码,具有成本效益、高可扩展性和提升开发效率等优势。文章还详细介绍了函数设计、安全性、监控及性能和成本优化的最佳实践。
|
29天前
|
弹性计算 运维 开发者
后端架构优化:微服务与容器化的协同进化
在现代软件开发中,后端架构的优化是提高系统性能和可维护性的关键。本文探讨了微服务架构与容器化技术如何相辅相成,共同推动后端系统的高效运行。通过分析两者的优势和挑战,我们提出了一系列最佳实践策略,旨在帮助开发者构建更加灵活、可扩展的后端服务。
|
29天前
|
消息中间件 运维 Cloud Native
云原生架构下的微服务优化策略####
本文深入探讨了云原生环境下微服务架构的优化路径,针对服务拆分、通信效率、资源管理及自动化运维等核心环节提出了具体的优化策略。通过案例分析与最佳实践分享,旨在为开发者提供一套系统性的解决方案,以应对日益复杂的业务需求和快速变化的技术挑战,助力企业在云端实现更高效、更稳定的服务部署与运营。 ####
|
1月前
|
存储 负载均衡 监控
如何利用Go语言的高效性、并发支持、简洁性和跨平台性等优势,通过合理设计架构、实现负载均衡、构建容错机制、建立监控体系、优化数据存储及实施服务治理等步骤,打造稳定可靠的服务架构。
在数字化时代,构建高可靠性服务架构至关重要。本文探讨了如何利用Go语言的高效性、并发支持、简洁性和跨平台性等优势,通过合理设计架构、实现负载均衡、构建容错机制、建立监控体系、优化数据存储及实施服务治理等步骤,打造稳定可靠的服务架构。
35 1
|
1月前
|
Kubernetes API Docker
构建高效后端服务:微服务架构的深度实践与优化####
本文深入探讨了微服务架构在现代后端开发中的应用,通过剖析其核心概念、设计原则及实施策略,结合具体案例分析,展示了如何有效提升系统的可扩展性、可靠性和维护性。文章还详细阐述了微服务拆分的方法论、服务间通信的最佳实践、以及容器化与编排工具(如Docker和Kubernetes)的应用技巧,为读者提供了一份全面的微服务架构落地指南。 ####