java并发多线程显式锁Condition条件简介分析与监视器 多线程下篇(四)

简介: java并发多线程显式锁Condition条件简介分析与监视器 多线程下篇(四) Lock接口提供了方法Condition newCondition();用于获取对应锁的条件,可以在这个条件对象上调用监视器方法 可以理解为,原本借助于synchronized关键字以及锁对象,配备了一个监视器 而显.

java并发多线程显式锁Condition条件简介分析与监视器 多线程下篇(四)

Lock接口提供了方法Condition newCondition();用于获取对应锁的条件,可以在这个条件对象上调用监视器方法
可以理解为,原本借助于synchronized关键字以及锁对象,配备了一个监视器
而显式锁Lock与Condition则针对于一个锁对象,提供了多个监视器
尽管是提供了多个监视器,但是需要记住,是Lock接口提供方法才能够获取到条件对象,所以这些条件对象仍旧是绑定到某一把锁上的
我相信,只要理解了监视器的概念,对于Condition理解起来是不会存在任何难度的,因为本身就是另外一种实现方式
image_5c81c4bd_31bc
从下图可以直观的感受到Condition是作为Object监视器方法的另外实现
wait在这边叫做await
notify在这边叫做signal
image_5c81c4bd_1aeb

等待

await

在监视器上等待
void await() throws InterruptedException;   ,看得出来,此方法是支持中断的
除非发生以下事件,否则将会持续等待
  • 其他某个线程调用此 Condition 的 signal() 方法,并且碰巧唤醒的是该线程
  • 其他某个线程调用此 Condition 的 signalAll() 方法;
  • 其他某个线程中断当前线程
  • “虚假唤醒” 

awaitUninterruptibly

不支持中断的await方法,void awaitUninterruptibly();
从await()的介绍中看得出来,除非发生提到的四种情况,否则将会是等待状态
而void awaitUninterruptibly();则是await()的不可中断版本,也就是只会有三种情况会跳出等待
  • 其他某个线程调用此 Condition 的 signal() 方法,并且碰巧唤醒的是该线程
  • 其他某个线程调用此 Condition 的 signalAll() 方法;
  • 其他某个线程中断当前线程
  • “虚假唤醒”  

awaitNanos

    long awaitNanos(long nanosTimeout) throws InterruptedException;
支持设置超时的等待,参数为等待的纳秒的long型数值
他在基于await的前提下,新增加了超时跳出,否则将会一直等待,他的跳出条件如下
  • 其他某个线程调用此 Condition 的 signal() 方法,并且碰巧唤醒的是该线程
  • 其他某个线程调用此 Condition 的 signalAll() 方法;
  • 其他某个线程中断当前线程
  • “虚假唤醒”  
  • 已超过指定的等待时间新增
返回值
需要注意的是此方法的返回值,是一个long
我们设置了一个超时时间,那么到底用了多少秒,还剩下多少秒?这个返回值就是这意思:
(nanosTimeout - 实际花费时间)的估算值,如果小于等于0,表示没有剩余时长;如果大于0,可以用来确定如果等待返回了是否还需要继续等待?
比如,你在等朋友A,A说你等我一小时,于是你去睡觉了,结果你睡了半小时就被叫醒了,那么跟你本来要等的时间还差半小时
那还要不要继续等了?还是一定要等到总共一小时呢?
典型用法(来自API):
复制代码
boolean aMethod(long timeout, TimeUnit unit) {
long nanos = unit.toNanos(timeout);
lock.lock();
try {
while (!conditionBeingWaitedFor()) {
if (nanos <= 0L)
return false;
nanos = theCondition.awaitNanos(nanos);
}
// ...
} finally {
lock.unlock();
}
}
复制代码
上面的方法中,如果条件仍旧不满足,但是等待结束了(也就是等待了足够多的时间了),直接返回false;否则将会继续执行,直到等到最后一刻
ps:这种代码风格也就JDK常写,否者这种if形式,估计要被项目经理骂

await(long time, TimeUnit unit)

    boolean await(long time, TimeUnit unit) throws InterruptedException;
此方法也是设置超时时长的等待方法,第一个参数为时长个数,第二个参数为第一个参数的单位
他相当于awaitNanos方法的封装(此处是逻辑上看起来,而不是说就是这个方法的封装)
awaitNanos(unit.toNanos(time)) > 0
所以返回类型为boolean,显然true表示没有等待足够的时间;,false 表示等待了足够时间,也就是等待超时

awaitUntil

    boolean awaitUntil(Date deadline) throws InterruptedException;
awaitUntil类似于await(long time, TimeUnit unit),只不过不是设置超时时长,而是设置截止日期
逻辑上可以把他们理解为一回事,如果没有等待足够时长,那么返回true;如果等待超时那么返回false
常用的逻辑(来自API)
复制代码
boolean aMethod(Date deadline) {
boolean stillWaiting = true;
lock.lock();
try {
while (!conditionBeingWaitedFor()) {
if (!stillWaiting)
return false;
stillWaiting = theCondition.awaitUntil(deadline);
}
// ...
} finally {
lock.unlock();
}
}
复制代码
上面的代码中,如果等待了足够的时长(等待超时),那么就会返回false;如果还有剩余时间,继续等待
 
普通的await()方法和awaitUninterruptibly都是直白的等待,一个支持中断,一个不支持中断
有超时设置的三个方法:
awaitNanos、await(long time, TimeUnit unit)、awaitUntil
都是在await()的基础上对超时时长或者截止日期的设置使用
不过这几个方法会返回剩余的超时时长或者使用boolean指示是否还有剩余
所以如果条件不满足,如果还没等够时间,可以控制继续等待或者退出
而对于Object提供的wait方法,就不能做到这么灵活的控制,要么就条件不满足继续等待,要么醒来后继续做别的事情,没办法相对准确的控制“必须要等待一定的时长”,因为如果wait(一小时),5分钟后,被唤醒了,这个用掉了的五分钟(或者说还剩余55分钟,是不知道的)

唤醒

关于唤醒有与Object提供的类似的两个方法,他们的逻辑含义也是一样的,唤醒一个或者唤醒所有,概念上并没有太多需要注意的事情
void signal();
void signalAll();

总结

Condition本身就是Object中监视器概念的另外实现,所以监视器方法调用,也需要持有锁,也就是说:
调用Condition的await()和signal()等方法,都必须在lock保护之内,就是说必须在lock.lock()和lock.unlock之间才可以使用
await系列方法相对于Object提供了更加灵活的使用形式,signal和signalAll的逻辑含义可以认为完全一致
另外需要注意await方法与Object中的wait一样,都会释放当前持有的锁,所以醒来之后,会需要重新获取锁
相关文章
|
2月前
|
JSON 网络协议 安全
【Java】(10)进程与线程的关系、Tread类;讲解基本线程安全、网络编程内容;JSON序列化与反序列化
几乎所有的操作系统都支持进程的概念,进程是处于运行过程中的程序,并且具有一定的独立功能,进程是系统进行资源分配和调度的一个独立单位一般而言,进程包含如下三个特征。独立性动态性并发性。
189 1
|
2月前
|
JSON 网络协议 安全
【Java基础】(1)进程与线程的关系、Tread类;讲解基本线程安全、网络编程内容;JSON序列化与反序列化
几乎所有的操作系统都支持进程的概念,进程是处于运行过程中的程序,并且具有一定的独立功能,进程是系统进行资源分配和调度的一个独立单位一般而言,进程包含如下三个特征。独立性动态性并发性。
213 1
|
3月前
|
数据采集 存储 弹性计算
高并发Java爬虫的瓶颈分析与动态线程优化方案
高并发Java爬虫的瓶颈分析与动态线程优化方案
Java 数据库 Spring
163 0
|
3月前
|
算法 Java
Java多线程编程:实现线程间数据共享机制
以上就是Java中几种主要处理多线程序列化资源以及协调各自独立运行但需相互配合以完成任务threads 的技术手段与策略。正确应用上述技术将大大增强你程序稳定性与效率同时也降低bug出现率因此深刻理解每项技术背后理论至关重要.
262 16
|
4月前
|
缓存 并行计算 安全
关于Java多线程详解
本文深入讲解Java多线程编程,涵盖基础概念、线程创建与管理、同步机制、并发工具类、线程池、线程安全集合、实战案例及常见问题解决方案,助你掌握高性能并发编程技巧,应对多线程开发中的挑战。
|
4月前
|
数据采集 存储 前端开发
Java爬虫性能优化:多线程抓取JSP动态数据实践
Java爬虫性能优化:多线程抓取JSP动态数据实践
|
5月前
|
Java API 调度
从阻塞到畅通:Java虚拟线程开启并发新纪元
从阻塞到畅通:Java虚拟线程开启并发新纪元
368 83
|
5月前
|
安全 算法 Java
Java 多线程:线程安全与同步控制的深度解析
本文介绍了 Java 多线程开发的关键技术,涵盖线程的创建与启动、线程安全问题及其解决方案,包括 synchronized 关键字、原子类和线程间通信机制。通过示例代码讲解了多线程编程中的常见问题与优化方法,帮助开发者提升程序性能与稳定性。
224 0
|
5月前
|
存储 Java 调度
Java虚拟线程:轻量级并发的革命性突破
Java虚拟线程:轻量级并发的革命性突破
343 83