理解皮尔逊相关系数(Pearson Correlation Coefficient)

简介:

其一, 按照高中数学水平来理解, 它很简单, 可以看做将两组数据首先做Z分数处理之后, 然后两组数据的乘积和除以样本数

Z分数一般代表正态分布中, 数据偏离中心点的距离.等于变量减掉平均数再除以标准差.(就是高考的标准分类似的处理)

标准差则等于变量减掉平均数的平方和,再除以样本数,最后再开方.

所以, 根据这个最朴素的理解,我们可以将公式依次精简为:

其二, 按照大学的线性数学水平来理解, 它比较复杂一点,可以看做是两组数据的向量夹角的余弦.

皮尔逊相关的约束条件

从以上解释, 也可以理解皮尔逊相关的约束条件:

  • 1 两个变量间有线性关系
  • 2 变量是连续变量
  • 3 变量均符合正态分布,且二元分布也符合正态分布
  • 4 两变量独立

在实践统计中,一般只输出两个系数,一个是相关系数,也就是计算出来的相关系数大小,在-1到1之间;另一个是独立样本检验系数,用来检验样本一致性.

先举个手算的例子

使用维基中的例子:

例如,假设五个国家的国民生产总值分别是1、2、3、5、8(单位10亿美元),又假设这五个国家的贫困比例分别是11%、12%、13%、15%、18%。

创建2个向量.(R语言)

x<-c(1,2,3,5,8)
y<-c(0.11,0.12,0.13,0.15,0.18)

按照维基的例子,应计算出相关系数为1出来.我们看看如何一步一步计算出来的.

x的平均数是:3.8
y的平均数是0.138
所以,

sum((x-mean(x))*(y-mean(y)))=0.308

用大白话来写就是:

(1-3.8)*(0.11-0.138)=0.0784
(2-3.8)*(0.12-0.138)=0.0324
(3-3.8)*(0.13-0.138)=0.0064
(5-3.8)*(0.15-0.138)=0.0144
(8-3.8)*(0.18-0.138)=0.1764

0.0784+0.0324+0.0064+0.0144+0.1764=0.308

同理, 分号下面的,分别是:

sum((x-mean(x))^2)=30.8 sum((y-mean(y))^2)= 0.00308

用大白话来写,分别是:

(1-3.8)^2=7.84 #平方
(2-3.8)^2=3.24 #平方
(3-3.8)^2=0.64 #平方
(5-3.8)^2=1.44 #平方
(8-3.8)^2=17.64 #平方

7.84+3.24+0.64+1.44+17.64=30.8

同理,求得:

sum((y-mean(y))^2)= 0.00308

然后再开平方根,分别是:

30.8^0.5=5.549775 0.00308^0.5=0.05549775

用分子除以分母,就计算出最终结果:

0.308/(5.549775*0.05549775)=1

假设有100人, 一组数据是年龄,平均年龄是35岁,标准差是5岁;另一组数据是发帖数量,平均帖子数量是45份post,标准差是8份帖子.

假设这两组都是正态分布.我们来求这两者的皮尔逊相关系数,R脚本如下:

> x<-rnorm(n=100,mean=35,sd=5)  #创建一组平均数为35,标准差为5,样本数为100的随机数
> y<-rnorm(n=100,mean=45,sd=8) #创建一组平均数为45,标准差为8,样本数为100的随机数
>  cor.test(x,y,method="pearson") #计算这两组数的相关,并进行T检验

然后R输出结果为:

Pearson's product-moment correlation

data:  x and y
t = -0.0269, df = 98, p-value = 0.9786
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.1990316  0.1938019
sample estimates:
         cor
-0.002719791

当然,这里是随机数.也可以用非随机的验证一下计算.

皮尔逊相关系数用于网站开发

直接将R与Ruby关联起来

调用很简单,仿照上述例子:

cor(x,y)

就输出系数结果了.

pythone程序员可以参考: Rpy (http://rpy.sourceforge.net/)

简单的相关系数的分类

  • 0.8-1.0 极强相关
  • 0.6-0.8 强相关
  • 0.4-0.6 中等程度相关
  • 0.2-0.4 弱相关
  • 0.0-0.2 极弱相关或无相关

xy(xy)


目录
相关文章
|
5月前
|
算法 数据挖掘 Python
k均值聚类算法
【6月更文挑战第6天】k均值聚类算法。
52 1
|
6月前
R语言stan泊松回归Poisson regression
R语言stan泊松回归Poisson regression
|
6月前
|
数据可视化
R语言中的多项式回归、B样条曲线(B-spline Curves)回归
R语言中的多项式回归、B样条曲线(B-spline Curves)回归
|
6月前
|
机器学习/深度学习 算法 数据可视化
K均值聚类、层次聚类
K均值聚类、层次聚类
|
机器学习/深度学习 数据挖掘
09 协方差与相关系数
09 协方差与相关系数
65 0
|
机器学习/深度学习 算法 数据挖掘
K-均值聚类算法
K-均值聚类算法
|
Python
相关系数 r 和决定系数 R2 的那些事
有人说相关系数(correlation coefficient, r)和决定系数(coefficient of determination, R2,读作R-Squared)都是评价两个变量相关性的指标,且相关系数的平方就是决定系数?这种说法对不对呢?请听下文分解!
1084 0
|
机器学习/深度学习 算法 数据挖掘
Kmeans聚类算法详解
Kmeans聚类算法详解
948 0
|
算法 数据可视化 数据挖掘
详解DBSCAN聚类(上)
详解DBSCAN聚类
413 1
详解DBSCAN聚类(上)
|
算法 数据挖掘
详解DBSCAN聚类(下)
详解DBSCAN聚类
254 0
详解DBSCAN聚类(下)