myrocks index condition pushdown

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: --- title: MySQL · myrocks · myrocks index condition pushdown author: 张远 --- # index condition pushdown Index condition pushdown[(ICP)](http://dev.mysql.com/doc/refman/5.6/en/index-condition-

title: MySQL · myrocks · myrocks index condition pushdown

author: 张远

index condition pushdown

Index condition pushdown(ICP)是直到mysql5.6才引入的特性,主要是为了减少通过二级索引查找主键索引的次数。目前ICP相关的文章也比较多,本文主要从源码角度介绍ICP的实现。讨论之前,我们先再温习下。

以下图片来自mariadb

  • 引入ICP之前
    screenshot.png
  • 引入ICP之后
    screenshot.png

再来看个例子

CREATE TABLE `t1` (
  `a` int(11) DEFAULT NULL,
  `b` char(8) DEFAULT NULL,
  `c` int(11) DEFAULT '0',
  `pk` int(11) NOT NULL AUTO_INCREMENT,
  PRIMARY KEY (`pk`),
  KEY `idx1` (`a`,`b`)
) ENGINE=ROCKSDB;
INSERT INTO t1 (a,b) VALUES (1,'a'),(2,'b'),(3,'c');
INSERT INTO t1 (a,b) VALUES (4,'a'),(4,'b'),(4,'c'),(4,'d'),(4,'e'),(4,'f');

set optimizer_switch='index_condition_pushdown=off';

# 关闭ICP(Using where)
explain select * from t1 where a=4 and b!='e';
+----+-------------+-------+-------+---------------+------+---------+------+------+-------------+
| id | select_type | table | type  | possible_keys | key  | key_len | ref  | rows | Extra       |
+----+-------------+-------+-------+---------------+------+---------+------+------+-------------+
|  1 | SIMPLE      | t1    | range | idx1          | idx1 | 14      | NULL |    2 | Using where |
+----+-------------+-------+-------+---------------+------+---------+------+------+-------------+

# 关闭ICP走cover index(Using where; Using index)
explain select a,b from t1 where a=4 and b!='e';
+----+-------------+-------+------+---------------+------+---------+-------+------+--------------------------+
| id | select_type | table | type | possible_keys | key  | key_len | ref   | rows | Extra                    |
+----+-------------+-------+------+---------------+------+---------+-------+------+--------------------------+
|  1 | SIMPLE      | t1    | ref  | idx1          | idx1 | 5       | const |    4 | Using where; Using index |
+----+-------------+-------+------+---------------+------+---------+-------+------+--------------------------+

set optimizer_switch='index_condition_pushdown=on';

# 开启ICP(Using index conditione)
explain select * from t1 where a=4 and b!='e';
+----+-------------+-------+-------+---------------+------+---------+------+------+-----------------------+
| id | select_type | table | type  | possible_keys | key  | key_len | ref  | rows | Extra                 |
+----+-------------+-------+-------+---------------+------+---------+------+------+-----------------------+
|  1 | SIMPLE      | t1    | range | idx1          | idx1 | 14      | NULL |    2 | Using index condition |
+----+-------------+-------+-------+---------------+------+---------+------+------+-----------------------+

# 开启ICP仍然是cover index(Using where; Using index)
explain select a,b from t1 where a=4 and b!='e';
+----+-------------+-------+------+---------------+------+---------+-------+------+--------------------------+
| id | select_type | table | type | possible_keys | key  | key_len | ref   | rows | Extra                    |
+----+-------------+-------+------+---------------+------+---------+-------+------+--------------------------+
|  1 | SIMPLE      | t1    | ref  | idx1          | idx1 | 5       | const |    4 | Using where; Using index |
+----+-------------+-------+------+---------------+------+---------+-------+------+--------------------------+

这里总结下ICP的条件

server层主要负责判断是否符合ICP的条件,符合ICP则把需要的condition push到engine层。
engine层通过二级索引查找数据时,用server层push的condition再做一次判断,如果符合条件才会去查找主索引。

目前mysql支持ICP的引擎有MyISAM和InnoDB,MyRocks引入rocksdb后,也支持了ICP。
server层实现是一样的,engine层我们主要介绍innodb和rocksdb的实现。

server层

关键代码片段如下

make_join_readinfo()
  
switch (tab->type) {
    case JT_EQ_REF:
    case JT_REF_OR_NULL:
    case JT_REF:
      if (tab->select)
        tab->select->set_quick(NULL);
      delete tab->quick;
      tab->quick=0;
      /* fall through */
    case JT_SYSTEM:
    case JT_CONST:
      /* Only happens with outer joins */
      if (setup_join_buffering(tab, join, options, no_jbuf_after,
                               &icp_other_tables_ok))
        DBUG_RETURN(true);
      if (tab->use_join_cache != JOIN_CACHE::ALG_NONE)
        tab[-1].next_select= sub_select_op;

      if (table->covering_keys.is_set(tab->ref.key) &&
          !table->no_keyread)
        table->set_keyread(TRUE);
      else
        push_index_cond(tab, tab->ref.key, icp_other_tables_ok,
                        &trace_refine_table);
      break;

从代码中看出只有符合的类型rangerefeq_ref, and ref_or_null 二级索引才可能会push_index_cond。

而这里通过covering_keys来判断并排除使用了cover index的情况。covering_keys是一个bitmap,保存了所有可能用到的覆盖索引。在解析查询列以及条件列时会设置covering_keys,详细可以参考setup_fields,setup_wild,setup_conds。

engine层

innodb

innodb在扫描二级索引时会根据是否有push condition来检查记录是否符合条件(row_search_idx_cond_check)
逻辑如下:

row_search_for_mysql()
......
  if (prebuilt->idx_cond)
  {
      row_search_idx_cond_check //检查condition
      row_sel_get_clust_rec_for_mysql //检查通过了才会去取主索引数据
  }
....

典型的堆栈如下

handler::compare_key_icp
innobase_index_cond
row_search_idx_cond_check
row_search_for_mysql
ha_innobase::index_read
ha_innobase::index_first
ha_innobase::rnd_next
handler::ha_rnd_next
rr_sequential
join_init_read_record
sub_select
do_select

rocksdb

rocksdb在扫描二级索引时也会根据是否有push condition来检查记录是否符合条件

逻辑如下

read_row_from_secondary_key()
{
   find_icp_matching_index_rec//push了condition才会检查condition
   get_row_by_rowid//检查通过了才会去取主索引数据
}

典型的堆栈如下

handler::compare_key_icp
myrocks::ha_rocksdb::check_index_cond
myrocks::ha_rocksdb::find_icp_matching_index_rec 
myrocks::ha_rocksdb::read_row_from_secondary_key 
myrocks::ha_rocksdb::index_read_map_impl 
myrocks::ha_rocksdb::read_range_first
handler::multi_range_read_next 

other

ICP对cover index作出了严格的限制,而实际上应该可以放开此限制,这样可以减少enging层传第给server层的数据量,至少可以减少server层的内存使用。欢迎指正!

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
4月前
|
存储 关系型数据库 MySQL
InnoDB and MyISAM Index Statistics Collection
存储引擎收集表统计信息,供优化器使用,关键数据为平均值组大小,反映相同键前缀值的行数均值。该值影响索引效率,值越大,索引查找行数越多,效用越低。MySQL通过调整`innodb_stats_method`和`myisam_status`系统变量控制统计方法,涉及NULL值处理,如nulls_equal将所有NULL视为同一值组,可能影响索引使用决策。通过设置变量可优化统计信息收集,提升查询性能。
|
SQL 缓存 Oracle
PostgreSQL 14中提升Nested Loop Joins性能的enable_memoize
PostgreSQL 14中提升Nested Loop Joins性能的enable_memoize
252 0
|
关系型数据库 MySQL 索引
MySQL - 索引下推 Index Condition Pushdown 初探
MySQL - 索引下推 Index Condition Pushdown 初探
145 0
|
存储 关系型数据库 MySQL
MySQL的索引条件下推(index condition pushdown,ICP)
索引下推:不符合索引最左前缀原则,却还能利用复合索引的其他字段,减少回表次数。 最左前缀可用于在索引中定位记录。那不符合最左前缀的部分,会怎样
118 0
|
存储 SQL 关系型数据库
mysql index cond push down 索引下推
mysql 索引下推在8.0的代码中进行了重构,目前的逻辑比较清晰。本文对该代码进行相关的分析。本文介绍的代码为mysql-8.0.21版本。
400 0
|
SQL 存储 弹性计算
PostgreSQL sharding extensino citus 优化器 Query Processing 之 - Subquery/CTE Push-Pull Execution
标签 PostgreSQL , citus , sharding , push , pull , 优化器 背景 citus 是postgresql的sharding 开源中间件,2018年被微软收购,插件依旧开源。 在处理非常复杂的SQL时,CITUS使用推拉模型,支持跨节点的数据交换,用以处理复杂SQL。 中间结果的push,pull过程: push : shard ->
284 0
|
存储 关系型数据库 MySQL
[MySQL] 联合索引与using index condition
[MySQL] 联合索引与using index condition1.测试联合索引的最左原则的时候, 发现了5.6版本后的新特性Index Condition Pushdown 2.含义就是存储引擎层根据索引尽可能的过滤数据,然后在返回给服务器层根据where其他条件进行过滤 3.
2738 0
|
存储 关系型数据库 索引
MyRocks Clustered Index特性
--- title: MySQL · myrocks · clustered index特性 author: 张远 --- # Cluster index介绍 最近在RDS MyRocks中,我们引入了一个重要功能,二级聚集索引(secondary clustering index). 我们知道innodb和rocksdb引擎的主键就是clustered index。二级聚集索引
1921 0