POJ2447 分解因数+扩展欧几里得+高次幂取模

简介:

昨天一天弄明白的pollard-rho启发式因数分解没想到今天就用上了 而且是一次过 感觉好有成就感 

题目大意 给你N=P*Q 先把p q从N因数分解出来 得到具体的值 然后(p-1)*(q-1)=t 从而求出t的值

有了t的值 根据e*d(mod t)=1 求出e模t的逆元d 注意求出的逆元可能为负 然后求c^d%n 为m 就是

题目要求的值

这题的解题步骤如下

1根据pollard-rho启发式因数分解 把n分解成两个素数p q;

2(p-1)*(q-1)求出t的值

3通过扩展欧几里得 求e模t的逆元变换为 e*d+t*y=1 求出d的值 此时d可能为负 变成正值

4求出c^d%n 即为答案

最后要感谢GF陪我熬夜 鼓励刺激我让我的模板出的那么快。。。


#include <iostream>
#include<cstdio>
#include<cstdlib>
using namespace std;
typedef long long int64;
int64 gcd(int64 a,int64 b)
{
    if (a==0) return 1;
    if(a<0) return gcd(-a,b);
    if(b==0) return a;
    return gcd(b,a%b);
}
int64 modmult(int64 a,int64 b,int64 n)//a*b%n
{
    a%=n;
    int64 ret;
    for(ret=0; b; a=(a<<1)%n,b>>=1)
        if(b&1)
            ret=(ret+a)%n;
    return ret;
}
int64 modular(int64 a,int64 b,int64 n)//renturn a^b%n
{
    int64 ans=1;
    a%=n;
    while(b)
    {
        if(b&1)
            ans=modmult(ans,a,n),b--;
        b>>=1;
        a=modmult(a,a,n);
    }
    return ans;
}
bool witness(int64 a,int64 n)//判断 a^(n-1)=1(mod n)
{
    int t=0;
    int64 x,xi,temp=n-1;
    while(temp%2==0)
        t++,temp/=2;
    xi=x=modular(a,temp,n);
    for(int i=1; i<=t; i++)
    {
        xi=modmult(xi,xi,n);
        if(xi==1&&x!=1&&x!=n-1)
            return 1;
        x=xi;
    }
    if(xi!=1)
        return 1;
    return 0;
}
bool millar_rabin(int64 n,int s)
{
    for(int j=1; j<=s; j++)
    {
        int64 a=rand()%(n-1)+1;//a=rand()%(Y-X+1)+X; /*n为X~Y之间的随机数
        if(witness(a,n))
            return 0;
    }
    return 1;
}
int64 pollard_rho(int64 n,int64 c)
{
    int64 i=1,k=2,x,y;
    x=rand()%n;
    y=x;
    while(1)
    {
        i++;
        x=(modmult(x,x,n)+c)%n;
        int64 d=gcd(y-x,n);
        if(d!=1&&d!=n)
            return d;
        if(x==y)
            return n;
        if(i==k)
        {
            y=x;
            k+=k;
        }
    }
}
int64 factor[100];
int tol;
void findfac(int64 n)
{
    if(millar_rabin(n,10))
    {
        factor[tol++]=n;
        return;
    }
    int64 p=n;
    while(p>=n)
        p=pollard_rho(p,rand()%(n-1)+1);
    findfac(p);
    findfac(n/p);
}
void exgcd(long long a,long long b,long long &d,long long &x,long long &y)
{
    if(b==0)
    {
        x=1;
        y=0;
        d=a;
        return;
    }
    else
    {
        exgcd(b,a%b,d,x,y);
        long long temp=x;
        x=y;
        y=temp-(a/b)*y;
    }
}
int main()
{
    long long c,e,n,d,t,gc,y,m;
    while(~scanf("%lld%lld%lld",&c,&e,&n))
    {
        tol=0;
        findfac(n);
        t=(factor[0]-1)*(factor[1]-1);
        exgcd(e,t,gc,d,y);
        d=(d+t)%t;
        m=modular(c,d,n);
        printf("%lld\n",m);
    }
    return 0;
}


目录
相关文章
|
6月前
|
算法 测试技术 C#
【数位dp】【数论】【动态规划】2999. 统计强大整数的数目
【数位dp】【数论】【动态规划】2999. 统计强大整数的数目
|
6月前
leetcode-372:超级次方(快速幂的实现以及取余的规则和推导)
leetcode-372:超级次方(快速幂的实现以及取余的规则和推导)
43 0
一个求公约数和公倍数的有趣求法
一个求公约数和公倍数的有趣求法
56 0
|
算法 C语言 C++
【数论】最大公约数、约数的个数与约数之和定理
先来科普下什么是约数:当a能被b整除,我们就说b为a的约数,b的倍数为a
114 0
|
算法 C++
容斥原理算法的实现
容斥原理算法的实现
容斥原理算法的实现
|
存储 算法
经典算法之异或运算(无进位相加)
经典算法之异或运算(无进位相加)
经典算法之异或运算(无进位相加)
求一个数n次方后的末尾数(数论/快速幂)
hdu1061-Rightmost Digit hdu1097-A hard puzzle 这两个oj题目思路几乎一样,都是为了快速求出一个数n次方后的末尾数为都多少?
233 0
求一个数n次方后的末尾数(数论/快速幂)