Go语言实现ping命令

简介: ping是使用ICMP协议ICMP协议的组成:Type(8bits) + Code(8bits) + 校验码(checksum,8bits) + ID(16bits) + 序号(sequence,16bits) + 数据这些组成部分的含义:1)Type ICMP的类型,标识生成的错误报文2)Code 进一步划分ICMP的类型,该字段用来查找产生的原因;例如,ICMP的目标不可达类型可以把这个位设为1至15等来表示不同的意思。

ping是使用ICMP协议

ICMP协议的组成:Type(8bits) + Code(8bits) + 校验码(checksum,8bits) + ID(16bits) + 序号(sequence,16bits) + 数据

这些组成部分的含义:
1)Type ICMP的类型,标识生成的错误报文
2)Code 进一步划分ICMP的类型,该字段用来查找产生的原因;例如,ICMP的目标不可达类型可以把这个位设为1至15等来表示不同的意思。
3)CheckSum 校验码部分,这个字段包含从ICMP报头和数据部分计算得来的,用于检查错误的,其中此校验码字段的值视为0.
4)ID 这个字段包含了ID值,在Echo Reply类型的消息中要返回这个字段。
5)Sequence 这个字段包含一个序号

ping命令的实现是使用ICMP中类型值为8(reply)和0(request)

现在开始编写代码:
一、解析参数

var (
    icmp  ICMP
    laddr = net.IPAddr{IP: net.ParseIP("ip")}
    //raddr, _ = net.ResolveIPAddr("ip", os.Args[1])
    num     int
    timeout int64
    size    int
    stop    bool
)

func ParseArgs() {
    flag.Int64Var(&timeout, "w", 1000, "等待每次回复的超时时间(毫秒)")
    flag.IntVar(&num, "n", 4, "要发送的请求数")
    flag.IntVar(&size, "l", 32, "要发送缓冲区大小")
    flag.BoolVar(&stop, "t", false, "Ping 指定的主机,直到停止")

    flag.Parse()
}

二、定义ICMP结构体

type ICMP struct {
    Type        uint8
    Code        uint8
    Checksum    uint16
    Identifier  uint16
    SequenceNum uint16
}

三、为ICMP变量设置值

//icmp头部填充
icmp.Type = 8
icmp.Code = 0
icmp.Checksum = 0
icmp.Identifier = 1
icmp.SequenceNum = 1

四、计算ICMP校验和
这边讲解下校验和的计算,ICMP的校验和IP的校验不同,ICMP的校验是校验ICMP头部和数据内容,ICMP校验和计算过程如下:
1)将ICMP头部内容中的校验内容(Checksum)的值设为0
2)将拼接好(Type+Code+Checksum+Id+Seq+传输Data)的ICMP包按Type开始每两个字节一组(其中Checksum的两个字节都看成0),进行加和处理,如果字节个数为奇数个,则直接加上这个字节内容。说明:这个加和过程的内容放在一个4字节上,如果溢出4字节,则将溢出的直接抛弃
3)将高16位与低16位内容加和,直到高16为0
4)将步骤三得出的结果取反,得到的结果就是ICMP校验和的值

验证校验和的方式也是一样,验证时先计算验证和,然后和验证和中内容进行比较是否一样

func CheckSum(data []byte) uint16 {
    var sum uint32
    var length = len(data)
    var index int

    for length > 1 { // 溢出部分直接去除
        sum += uint32(data[index])<<8 + uint32(data[index+1])
        index += 2
        length -= 2
    }
    if length == 1 {
        sum += uint32(data[index])
    }
        sum = uint16(sum >> 16) + uint16(sum)
        sum = uint16(sum >> 16) + uint16(sum)
    return uint16(^sum)
}

五、发送ICMP包
六、打印结果

完整实现代码:
github下载链接:https://github.com/laijinhang/ping

package main

import (
    "bytes"
    "encoding/binary"
    "flag"
    "fmt"
    "log"
    "net"
    "os"
    "time"
    "math"
)

type ICMP struct {
    Type        uint8
    Code        uint8
    Checksum    uint16
    Identifier  uint16
    SequenceNum uint16
}

var (
    icmp  ICMP
    laddr = net.IPAddr{IP: net.ParseIP("ip")}
    num     int
    timeout int64
    size    int
    stop    bool
)

func main() {
    ParseArgs()
    args := os.Args

    if len(args) < 2 {
        Usage()
    }
    desIp := args[len(args) - 1]

    conn, err := net.DialTimeout("ip:icmp", desIp, time.Duration(timeout) * time.Millisecond)
    if err != nil {
        log.Fatal(err)
    }

    defer conn.Close()
    //icmp头部填充
    icmp.Type = 8
    icmp.Code = 0
    icmp.Checksum = 0
    icmp.Identifier = 1
    icmp.SequenceNum = 1

    fmt.Printf("\n正在 ping %s 具有 %d 字节的数据:\n", desIp, size)

    var buffer bytes.Buffer
    binary.Write(&buffer, binary.BigEndian, icmp) // 以大端模式写入
    data := make([]byte, size)                    //
    buffer.Write(data)
    data = buffer.Bytes()

    var SuccessTimes int    // 成功次数
    var FailTimes int       // 失败次数
    var minTime int = int(math.MaxInt32)
    var maxTime int
    var totalTime int
    for i := 0;i < num;i++ {
        icmp.SequenceNum = uint16(1)
        // 检验和设为0
        data[2] = byte(0)
        data[3] = byte(0)

        data[6] = byte(icmp.SequenceNum >> 8)
        data[7] = byte(icmp.SequenceNum)
        icmp.Checksum = CheckSum(data)
        data[2] = byte(icmp.Checksum >> 8)
        data[3] = byte(icmp.Checksum)

        // 开始时间
        t1 := time.Now()
        conn.SetDeadline(t1.Add(time.Duration(time.Duration(timeout) * time.Millisecond)))
        n, err := conn.Write(data)
        if err != nil {
            log.Fatal(err)
        }
        buf := make([]byte, 65535)
        n, err = conn.Read(buf)
        if err != nil {
            fmt.Println("请求超时。")
            FailTimes++
            continue
        }
        et := int(time.Since(t1) / 1000000)
        if minTime > et {
            minTime = et
        }
        if maxTime <et {
            maxTime = et
        }
        totalTime += et
        fmt.Printf("来自 %s 的回复: 字节=%d 时间=%dms TTL=%d\n", desIp, len(buf[28:n]), et, buf[8])
        SuccessTimes++
        time.Sleep(1 * time.Second)
    }
    fmt.Printf("\n%s 的 Ping 统计信息:\n", desIp)
    fmt.Printf("    数据包: 已发送 = %d,已接收 = %d,丢失 = %d (%.2f%% 丢失),\n", SuccessTimes + FailTimes, SuccessTimes, FailTimes, float64(FailTimes * 100) / float64(SuccessTimes + FailTimes))
    if maxTime != 0 && minTime != int(math.MaxInt32) {
        fmt.Printf("往返行程的估计时间(以毫秒为单位):\n")
        fmt.Printf("    最短 = %dms,最长 = %dms,平均 = %dms\n", minTime, maxTime, totalTime / SuccessTimes)
    }
}

func CheckSum(data []byte) uint16 {
    var sum uint32
    var length = len(data)
    var index int
    for length > 1 { // 溢出部分直接去除
        sum += uint32(data[index]) << 8 + uint32(data[index+1])
        index += 2
        length -= 2
    }
    if length == 1 {
        sum += uint32(data[index])
    }
    // CheckSum的值是16位,计算是将高16位加低16位,得到的结果进行重复以该方式进行计算,直到高16位为0
    /*
        sum的最大情况是:ffffffff
        第一次高16位+低16位:ffff + ffff = 1fffe
        第二次高16位+低16位:0001 + fffe = ffff
        即推出一个结论,只要第一次高16位+低16位的结果,再进行之前的计算结果用到高16位+低16位,即可处理溢出情况
     */
    sum = uint32(sum >> 16) + uint32(sum)
    sum = uint32(sum >> 16) + uint32(sum)
    return uint16(^sum)
}

func ParseArgs() {
    flag.Int64Var(&timeout, "w", 1500, "等待每次回复的超时时间(毫秒)")
    flag.IntVar(&num, "n", 4, "要发送的请求数")
    flag.IntVar(&size, "l", 32, "要发送缓冲区大小")
    flag.BoolVar(&stop, "t", false, "Ping 指定的主机,直到停止")

    flag.Parse()
}

func Usage() {
    argNum := len(os.Args)
    if argNum < 2 {
        fmt.Print(
            `
用法: ping [-t] [-a] [-n count] [-l size] [-f] [-i TTL] [-v TOS]
            [-r count] [-s count] [[-j host-list] | [-k host-list]]
            [-w timeout] [-R] [-S srcaddr] [-c compartment] [-p]
            [-4] [-6] target_name
选项:
    -t             Ping 指定的主机,直到停止。
                   若要查看统计信息并继续操作,请键入 Ctrl+Break;
                   若要停止,请键入 Ctrl+C。
    -a             将地址解析为主机名。
    -n count       要发送的回显请求数。
    -l size        发送缓冲区大小。
    -f             在数据包中设置“不分段”标记(仅适用于 IPv4)。
    -i TTL         生存时间。
    -v TOS         服务类型(仅适用于 IPv4。该设置已被弃用,
                   对 IP 标头中的服务类型字段没有任何
                   影响)。
    -r count       记录计数跃点的路由(仅适用于 IPv4)。
    -s count       计数跃点的时间戳(仅适用于 IPv4)。
    -j host-list   与主机列表一起使用的松散源路由(仅适用于 IPv4)。
    -k host-list    与主机列表一起使用的严格源路由(仅适用于 IPv4)。
    -w timeout     等待每次回复的超时时间(毫秒)。
    -R             同样使用路由标头测试反向路由(仅适用于 IPv6)。
                   根据 RFC 5095,已弃用此路由标头。
                   如果使用此标头,某些系统可能丢弃
                   回显请求。
    -S srcaddr     要使用的源地址。
    -c compartment 路由隔离舱标识符。
    -p             Ping Hyper-V 网络虚拟化提供程序地址。
    -4             强制使用 IPv4。
    -6             强制使用 IPv6。
`)
    }
}

参考文章:
1)https://blog.csdn.net/zhj082/article/details/80518322
2)https://blog.csdn.net/simplelovecs/article/details/51146960
3)https://blog.csdn.net/gophers/article/details/21481447
4)https://blog.csdn.net/zhj082/article/details/80518322

目录
相关文章
|
1天前
|
前端开发 Go
Golang深入浅出之-Go语言中的异步编程与Future/Promise模式
【5月更文挑战第3天】Go语言通过goroutines和channels实现异步编程,虽无内置Future/Promise,但可借助其特性模拟。本文探讨了如何使用channel实现Future模式,提供了异步获取URL内容长度的示例,并警示了Channel泄漏、错误处理和并发控制等常见问题。为避免这些问题,建议显式关闭channel、使用context.Context、并发控制机制及有效传播错误。理解并应用这些技巧能提升Go语言异步编程的效率和健壮性。
12 5
Golang深入浅出之-Go语言中的异步编程与Future/Promise模式
|
1天前
|
监控 负载均衡 算法
Golang深入浅出之-Go语言中的协程池设计与实现
【5月更文挑战第3天】本文探讨了Go语言中的协程池设计,用于管理goroutine并优化并发性能。协程池通过限制同时运行的goroutine数量防止资源耗尽,包括任务队列和工作协程两部分。基本实现思路涉及使用channel作为任务队列,固定数量的工作协程处理任务。文章还列举了一个简单的协程池实现示例,并讨论了常见问题如任务队列溢出、协程泄露和任务调度不均,提出了解决方案。通过合理设置缓冲区大小、确保资源释放、优化任务调度以及监控与调试,可以避免这些问题,提升系统性能和稳定性。
13 6
|
1天前
|
安全 Go
Golang深入浅出之-Go语言中的并发安全队列:实现与应用
【5月更文挑战第3天】本文探讨了Go语言中的并发安全队列,它是构建高性能并发系统的基础。文章介绍了两种实现方法:1) 使用`sync.Mutex`保护的简单队列,通过加锁解锁确保数据一致性;2) 使用通道(Channel)实现无锁队列,天生并发安全。同时,文中列举了并发编程中常见的死锁、数据竞争和通道阻塞问题,并给出了避免这些问题的策略,如明确锁边界、使用带缓冲通道、优雅处理关闭以及利用Go标准库。
12 5
|
2天前
|
存储 缓存 安全
Golang深入浅出之-Go语言中的并发安全容器:sync.Map与sync.Pool
Go语言中的`sync.Map`和`sync.Pool`是并发安全的容器。`sync.Map`提供并发安全的键值对存储,适合快速读取和少写入的情况。注意不要直接遍历Map,应使用`Range`方法。`sync.Pool`是对象池,用于缓存可重用对象,减少内存分配。使用时需注意对象生命周期管理和容量控制。在多goroutine环境下,这两个容器能提高性能和稳定性,但需根据场景谨慎使用,避免不当操作导致的问题。
17 4
|
2天前
|
安全 Go 开发者
Golang深入浅出之-Go语言中的CSP模型:深入理解并发哲学
【5月更文挑战第2天】Go语言的并发编程基于CSP模型,强调通过通信共享内存。核心概念是goroutines(轻量级线程)和channels(用于goroutines间安全数据传输)。常见问题包括数据竞争、死锁和goroutine管理。避免策略包括使用同步原语、复用channel和控制并发。示例展示了如何使用channel和`sync.WaitGroup`避免死锁。理解并发原则和正确应用CSP模型是编写高效安全并发程序的关键。
21 4
|
3天前
|
安全 Go 开发者
Golang深入浅出之-Go语言中的CSP模型:深入理解并发哲学
【5月更文挑战第1天】Go语言基于CSP理论,借助goroutines和channels实现独特的并发模型。Goroutine是轻量级线程,通过`go`关键字启动,而channels提供安全的通信机制。文章讨论了数据竞争、死锁和goroutine泄漏等问题及其避免方法,并提供了一个生产者消费者模型的代码示例。理解CSP和妥善处理并发问题对于编写高效、可靠的Go程序至关重要。
13 2
|
3天前
|
设计模式 Go 调度
Golang深入浅出之-Go语言中的并发模式:Pipeline、Worker Pool等
【5月更文挑战第1天】Go语言并发模拟能力强大,Pipeline和Worker Pool是常用设计模式。Pipeline通过多阶段处理实现高效并行,常见问题包括数据竞争和死锁,可借助通道和`select`避免。Worker Pool控制并发数,防止资源消耗,需注意任务分配不均和goroutine泄露,使用缓冲通道和`sync.WaitGroup`解决。理解和实践这些模式是提升Go并发性能的关键。
20 2
|
3天前
|
JSON 监控 安全
Golang深入浅出之-Go语言中的反射(reflect):原理与实战应用
【5月更文挑战第1天】Go语言的反射允许运行时检查和修改结构,主要通过`reflect`包的`Type`和`Value`实现。然而,滥用反射可能导致代码复杂和性能下降。要安全使用,应注意避免过度使用,始终进行类型检查,并尊重封装。反射的应用包括动态接口实现、JSON序列化和元编程。理解反射原理并谨慎使用是关键,应尽量保持代码静态类型。
17 2
|
3天前
|
Go
Golang深入浅出之-Go语言代码质量与规范:遵循Gofmt与Linting
【5月更文挑战第1天】本文讨论了如何使用`gofmt`和Lint工具提升Go代码质量。`gofmt`负责自动格式化代码,保持风格统一,而Lint工具如`golint`、`govet`、`staticcheck`则进行静态分析,检查潜在错误和未使用的变量。通过集成`gofmt`检查到CI/CD流程,避免格式冲突,并使用Lint工具发现并修复问题,如未处理的错误、不规范命名。遵循这些最佳实践,可提高代码可读性、团队协作效率和可维护性。
14 3
|
4天前
|
JSON 安全 Java
2024年的选择:为什么Go可能是理想的后端语言
【4月更文挑战第27天】Go语言在2024年成为后端开发的热门选择,其简洁设计、内置并发原语和强大工具链备受青睐。文章探讨了Go的设计哲学,如静态类型、垃圾回收和CSP并发模型,并介绍了使用Gin和Echo框架构建Web服务。Go的并发通过goroutines和channels实现,静态类型确保代码稳定性和安全性,快速编译速度利于迭代。Go广泛应用在云计算、微服务等领域,拥有丰富的生态系统和活跃社区,适合作为应对未来技术趋势的语言。
10 0

热门文章

最新文章