关于C++编译链接和模板函数

简介: 一,关于编译链接编译指的的把编译单元生成目标文件的过程链接是把目标文件链接到一起的过程编译单元:可以认为是一个.c或者.cpp文件。每个编译单元经过预处理会得到一个临时的编译单元。预处理会间接包含其他文件还会展开宏调用。

一,关于编译链接
编译指的的把编译单元生成目标文件的过程

链接是把目标文件链接到一起的过程

编译单元:可以认为是一个.c或者.cpp文件。每个编译单元经过预处理会得到一个临时的编译单元。预处理会间接包含其他文件还会展开宏调用。

每个编译单元编译成目标文件后会暴露自己内部的符号。
(比如有个fun函数,就会暴露出于fun函数对应的符号,其他的函数和变量也是一样的。但是也有不会暴露出去的,比如加了static修饰的函数或变量)
每个目标文件都有自己的符号导入表和符号导出表。


链接器根据自己所需要的符号去找其他的目标文件。
(假如main用到了别的文件定义发fun函数,在链接的过程中,链接器知道mian需要fun符号,然后去其他的目标文件总找。如果找到了就链接起来。找不到就报链接错误)

二、模板函数
模板函数的代码并不能直接编译成二进制代码,其中要有一个实例化的过程。模板被用到的时候才会进行实例化。

1.假设有个test.h里面声明了模板函数。
test.cpp实现了那个模板函数。
main用到了那个模板函数。
编译器会编译test.cpp编译单元和main.cpp编译单元。
编译test.cpp时无法给出A<int>::fun这样的符号
main.cpp需要一个这样的符号A<int>::fun。

在分离式编译的环境下,编译器编译某个cpp文件时并不知道另外的cpp的存在,也不会去查找(当遇到未决符号时他会寄希望于链接器)。
这种模式在没有模板的情况下运行良好,但是遇到模板时就不行了,因为模板仅在需要的时候才会实例化出来。
所以当编译器只看到模板的声明时,它不能实例化该模板,只能创建一个具有外部连接的符号,并期待链接器能够将符号的地址决议找出来。
然而实现该模板的cpp文件并没有用到该模板时,编译器就不会去实例化。
所以整个工程当中找不到模板实例的代码,链接器就找不到那个符号。就会报错了。

3.实例:
test.h

#ifndef __CAR_H__
#define __CAR_H__
#include<iostream>
using namespace std;
#define IN_CPP 1
template <class T>
class car
{
public:
    car(T a);
    void print();
public:
    T data;
};
#if IN_CPP
#else
template <class T>
car<T>::car(T a)
{
    data = a;
}
template <class T>
void car<T>::print()
{
    cout << "data = " << data << endl;
}
#endif
#endif // __CAR_H__

test.cpp

#include "car.h"
#if IN_CPP
template <class T>
car<T>::car(T a)
{
    data = a;
}
template <class T>
void car<T>::print()
{
    cout << "data = " << data << endl;
}
#endif
void callTest()
{
    car<int> a(33);
    a.print();
}

main.cpp

#include<iostream>
#include "car.h"
using namespace std;
void fun()
{
    cout << "fun() +++" << endl;
    car<int> a(99);
    a.print();
}
int main()
{
    fun();
    return 0;
}

分析:

IN_CPP 如果是0:就相当于声明实现都在头文件中。这样main.cpp是可以编译运行的。
IN_CPP 如果是1:说明声明跟实现分开了。这种情况main.cpp链接时找不到 car构造相关的函数,也找不到模板类car中print的函数。会报两个链接错。
但是如果在test.cpp写个函数(callTest())调用car的构造和print,相当于实例化了那两个类模板函数。就会导出那两个函数的符号。假如只调用一个构造,那么print就没有实例化。main也会链接失败
然后在main.cpp就可以调用到了。

目录
相关文章
|
2月前
|
自然语言处理 编译器 Linux
|
2月前
|
安全 编译器 C++
【C++11】可变模板参数详解
本文详细介绍了C++11引入的可变模板参数,这是一种允许模板接受任意数量和类型参数的强大工具。文章从基本概念入手,讲解了可变模板参数的语法、参数包的展开方法,以及如何结合递归调用、折叠表达式等技术实现高效编程。通过具体示例,如打印任意数量参数、类型安全的`printf`替代方案等,展示了其在实际开发中的应用。最后,文章讨论了性能优化策略和常见问题,帮助读者更好地理解和使用这一高级C++特性。
70 4
|
2月前
|
算法 编译器 C++
【C++】模板详细讲解(含反向迭代器)
C++模板是泛型编程的核心,允许编写与类型无关的代码,提高代码复用性和灵活性。模板分为函数模板和类模板,支持隐式和显式实例化,以及特化(全特化和偏特化)。C++标准库广泛使用模板,如容器、迭代器、算法和函数对象等,以支持高效、灵活的编程。反向迭代器通过对正向迭代器的封装,实现了逆序遍历的功能。
37 3
|
2月前
|
自然语言处理 编译器 Linux
告别头文件,编译效率提升 42%!C++ Modules 实战解析 | 干货推荐
本文中,阿里云智能集团开发工程师李泽政以 Alinux 为操作环境,讲解模块相比传统头文件有哪些优势,并通过若干个例子,学习如何组织一个 C++ 模块工程并使用模块封装第三方库或是改造现有的项目。
|
3月前
|
存储 程序员 编译器
简述 C、C++程序编译的内存分配情况
在C和C++程序编译过程中,内存被划分为几个区域进行分配:代码区存储常量和执行指令;全局/静态变量区存放全局变量及静态变量;栈区管理函数参数、局部变量等;堆区则用于动态分配内存,由程序员控制释放,共同支撑着程序运行时的数据存储与处理需求。
191 22
|
2月前
|
编译器 C++
【c++】模板详解(1)
本文介绍了C++中的模板概念,包括函数模板和类模板,强调了模板作为泛型编程基础的重要性。函数模板允许创建类型无关的函数,类模板则能根据不同的类型生成不同的类。文章通过具体示例详细解释了模板的定义、实例化及匹配原则,帮助读者理解模板机制,为学习STL打下基础。
35 0
|
3月前
|
程序员 C++ 容器
在 C++中,realloc 函数返回 NULL 时,需要手动释放原来的内存吗?
在 C++ 中,当 realloc 函数返回 NULL 时,表示内存重新分配失败,但原内存块仍然有效,因此需要手动释放原来的内存,以避免内存泄漏。
|
3月前
|
编译器 程序员 C++
【C++打怪之路Lv7】-- 模板初阶
【C++打怪之路Lv7】-- 模板初阶
25 1
|
3月前
|
存储 前端开发 C++
C++ 多线程之带返回值的线程处理函数
这篇文章介绍了在C++中使用`async`函数、`packaged_task`和`promise`三种方法来创建带返回值的线程处理函数。
112 6
|
3月前
|
C++
C++ 多线程之线程管理函数
这篇文章介绍了C++中多线程编程的几个关键函数,包括获取线程ID的`get_id()`,延时函数`sleep_for()`,线程让步函数`yield()`,以及阻塞线程直到指定时间的`sleep_until()`。
51 0