[剑指offer] 滑动窗口的最大值

简介: 本文首发于我的个人博客:[尾尾部落](https://weiweiblog.cn/maxinwindows/)题目描述给定一个数组和滑动窗口的大小,找出所有滑动窗口里数值的最大值。

本文首发于我的个人博客:[尾尾部落](https://weiweiblog.cn/maxinwindows/

题目描述

给定一个数组和滑动窗口的大小,找出所有滑动窗口里数值的最大值。例如,如果输入数组{2,3,4,2,6,2,5,1}及滑动窗口的大小3,那么一共存在6个滑动窗口,他们的最大值分别为{4,4,6,6,6,5}; 针对数组{2,3,4,2,6,2,5,1}的滑动窗口有以下6个: {[2,3,4],2,6,2,5,1}, {2,[3,4,2],6,2,5,1}, {2,3,[4,2,6],2,5,1}, {2,3,4,[2,6,2],5,1}, {2,3,4,2,[6,2,5],1}, {2,3,4,2,6,[2,5,1]}。

解题思路

法一:简单的暴力法
法二:双向队列
用一个双向队列,队列第一个位置保存当前窗口的最大值,当窗口滑动一次,判断当前最大值是否过期(当前最大值的位置是不是在窗口之外),新增加的值从队尾开始比较,把所有比他小的值丢掉。这样时间复杂度为O(n)。

参考代码

法一:简单的暴力法

import java.util.ArrayList;
public class Solution {
    public ArrayList<Integer> maxInWindows(int [] num, int size)
    {
        ArrayList<Integer> res = new ArrayList<Integer>();
        if(num.length < size || size == 0)
            return res;
        for(int i = 0; i < num.length - size + 1; i++){
            res.add(max(num, i, size));
        }
        return res;
    }
    public int max(int [] num, int index, int size){
        int res = num[index];
        for(int i = index + 1; i < index + size; i++){
            if(num[i] > res)
                res = num[i];
        }
        return res;
    }
}

法二:双向队列

import java.util.ArrayList;
import java.util.LinkedList;
public class Solution {
    public ArrayList<Integer> maxInWindows(int [] num, int size){
        ArrayList<Integer> res = new ArrayList<Integer>();
        LinkedList<Integer> deque = new LinkedList<Integer>();
        if(num.length == 0 || size == 0)
            return res;
        for(int i = 0; i < num.length; i++){
            if(!deque.isEmpty() && deque.peekFirst() <= i - size)
                deque.poll();
            while(!deque.isEmpty() && num[deque.peekLast()] < num[i])
                deque.removeLast();
            deque.offerLast(i);
            if(i + 1 >= size)
                res.add(num[deque.peekFirst()]);
        }
        return res;
    }
}
目录
相关文章
|
1天前
|
弹性计算 运维 搜索推荐
三翼鸟携手阿里云ECS g9i:智慧家庭场景的效能革命与未来生活新范式
三翼鸟是海尔智家旗下全球首个智慧家庭场景品牌,致力于提供覆盖衣、食、住、娱的一站式全场景解决方案。截至2025年,服务近1亿家庭,连接设备超5000万台。面对高并发、低延迟与稳定性挑战,全面升级为阿里云ECS g9i实例,实现连接能力提升40%、故障率下降90%、响应速度提升至120ms以内,成本降低20%,推动智慧家庭体验全面跃迁。
|
2天前
|
数据采集 人工智能 自然语言处理
3分钟采集134篇AI文章!深度解析如何通过云无影AgentBay实现25倍并发 + LlamaIndex智能推荐
结合阿里云无影 AgentBay 云端并发采集与 LlamaIndex 智能分析,3分钟高效抓取134篇 AI Agent 文章,实现 AI 推荐、智能问答与知识沉淀,打造从数据获取到价值提炼的完整闭环。
337 90
|
9天前
|
人工智能 自然语言处理 前端开发
Qoder全栈开发实战指南:开启AI驱动的下一代编程范式
Qoder是阿里巴巴于2025年发布的AI编程平台,首创“智能代理式编程”,支持自然语言驱动的全栈开发。通过仓库级理解、多智能体协同与云端沙箱执行,实现从需求到上线的端到端自动化,大幅提升研发效率,重塑程序员角色,引领AI原生开发新范式。
804 156
|
2天前
|
数据采集 缓存 数据可视化
Android 无侵入式数据采集:从手动埋点到字节码插桩的演进之路
本文深入探讨Android无侵入式埋点技术,通过AOP与字节码插桩(如ASM)实现数据采集自动化,彻底解耦业务代码与埋点逻辑。涵盖页面浏览、点击事件自动追踪及注解驱动的半自动化方案,提升数据质量与研发效率,助力团队迈向高效、稳定的智能化埋点体系。(238字)
243 156
|
3天前
|
域名解析 人工智能
【实操攻略】手把手教学,免费领取.CN域名
即日起至2025年12月31日,购买万小智AI建站或云·企业官网,每单可免费领1个.CN域名首年!跟我了解领取攻略吧~
|
10天前
|
机器人 API 调度
基于 DMS Dify+Notebook+Airflow 实现 Agent 的一站式开发
本文提出“DMS Dify + Notebook + Airflow”三位一体架构,解决 Dify 在代码执行与定时调度上的局限。通过 Notebook 扩展 Python 环境,Airflow实现任务调度,构建可扩展、可运维的企业级智能 Agent 系统,提升大模型应用的工程化能力。
|
人工智能 前端开发 API
前端接入通义千问(Qwen)API:5 分钟实现你的 AI 问答助手
本文介绍如何在5分钟内通过前端接入通义千问(Qwen)API,快速打造一个AI问答助手。涵盖API配置、界面设计、流式响应、历史管理、错误重试等核心功能,并提供安全与性能优化建议,助你轻松集成智能对话能力到前端应用中。
785 154