NPOI读取excel文件导出数据, 而此时文件正在打开中抛异常怎么办

简介: 项目中需要用到一些数值表格, 方便起见都是用excel来的. 而如果excel正打开中, 直接使用npoi制作的工具来导出数据的话, 在这一行将会异常: workbook = new XSSFWorkbook(filepath); 其实只是读取的话, 并不需要获得它完整的使用权限, 那么用file.

项目中需要用到一些数值表格, 方便起见都是用excel来的.

而如果excel正打开中, 直接使用npoi制作的工具来导出数据的话, 在这一行将会异常:

workbook = new XSSFWorkbook(filepath);

其实只是读取的话, 并不需要获得它完整的使用权限, 那么用file.open然后再new workbook行不行? 也不行.

其实看那些excel其他软件的做法就很简单了, 首先执行一次copy

string tmpFile = "~tooltmp.xlsx";
File.Copy(excelFileName, tmpFile, true);

然后打开这个copy的临时文件就可以了, 因为是自己创建的文件, 有完全的使用权也不会有别人来用吧~

目录
相关文章
|
26天前
|
数据采集 存储 JavaScript
自动化数据处理:使用Selenium与Excel打造的数据爬取管道
本文介绍了一种使用Selenium和Excel结合代理IP技术从WIPO品牌数据库(branddb.wipo.int)自动化爬取专利信息的方法。通过Selenium模拟用户操作,处理JavaScript动态加载页面,利用代理IP避免IP封禁,确保数据爬取稳定性和隐私性。爬取的数据将存储在Excel中,便于后续分析。此外,文章还详细介绍了Selenium的基本设置、代理IP配置及使用技巧,并探讨了未来可能采用的更多防反爬策略,以提升爬虫效率和稳定性。
|
23天前
|
数据处理 Python
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
这篇文章介绍了如何使用Python读取Excel文件中的数据,处理后将其保存为txt、xlsx和csv格式的文件。
42 3
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
|
2天前
|
Java API Apache
|
6天前
|
存储 Java API
Java实现导出多个excel表打包到zip文件中,供客户端另存为窗口下载
Java实现导出多个excel表打包到zip文件中,供客户端另存为窗口下载
16 4
|
10天前
|
JavaScript 前端开发 数据处理
Vue导出el-table表格为Excel文件的两种方式
Vue导出el-table表格为Excel文件的两种方式
|
26天前
|
easyexcel Java UED
SpringBoot中大量数据导出方案:使用EasyExcel并行导出多个excel文件并压缩zip后下载
在SpringBoot环境中,为了优化大量数据的Excel导出体验,可采用异步方式处理。具体做法是将数据拆分后利用`CompletableFuture`与`ThreadPoolTaskExecutor`并行导出,并使用EasyExcel生成多个Excel文件,最终将其压缩成ZIP文件供下载。此方案提升了导出效率,改善了用户体验。代码示例展示了如何实现这一过程,包括多线程处理、模板导出及资源清理等关键步骤。
|
19天前
|
前端开发 JavaScript API
前端基于XLSX实现数据导出到Excel表格,以及提示“文件已经被损坏,无法打开”的解决方法
前端基于XLSX实现数据导出到Excel表格,以及提示“文件已经被损坏,无法打开”的解决方法
83 0
|
24天前
|
前端开发 JavaScript Java
导出excel的两个方式:前端vue+XLSX 导出excel,vue+后端POI 导出excel,并进行分析、比较
这篇文章介绍了使用前端Vue框架结合XLSX库和后端结合Apache POI库导出Excel文件的两种方法,并对比分析了它们的优缺点。
183 0
|
3月前
|
关系型数据库 MySQL Shell
不通过navicat工具怎么把查询数据导出到excel表中
不通过navicat工具怎么把查询数据导出到excel表中
41 0
|
2月前
|
数据采集 存储 数据挖掘
使用Python读取Excel数据
本文介绍了如何使用Python的`pandas`库读取和操作Excel文件。首先,需要安装`pandas`和`openpyxl`库。接着,通过`read_excel`函数读取Excel数据,并展示了读取特定工作表、查看数据以及计算平均值等操作。此外,还介绍了选择特定列、筛选数据和数据清洗等常用操作。`pandas`是一个强大且易用的工具,适用于日常数据处理工作。