glide架构描述

简介: 本文的分析基于glide 3.7.0源码glide是google官方推荐的图片加载框架,github地址为bumptech/glide 。glide的强大在于它的生命周期管理(glide可以根据Activity的生命周期自动加载或者暂停图片任务);glide使用了三级缓存(一级活跃缓存、二级内存缓存、三级磁盘缓存);gilide使用了BitmapTool机制对图片内存进行复用,可以防止界面快速滑动时的内存不断申请、释放造成的内存抖动;glide可以使用Thumbnail预览图的方式提高加载速率和加载体验。

本文的分析基于glide 3.7.0源码

glide是google官方推荐的图片加载框架,github地址为bumptech/glide 。glide的强大在于它的生命周期管理(glide可以根据Activity的生命周期自动加载或者暂停图片任务);glide使用了三级缓存(一级活跃缓存、二级内存缓存、三级磁盘缓存);gilide使用了BitmapTool机制对图片内存进行复用,可以防止界面快速滑动时的内存不断申请、释放造成的内存抖动;glide可以使用Thumbnail预览图的方式提高加载速率和加载体验。

glide的最基本的使用方法如下,Glide文件提供了一系列的静态方法供外部调用:

img_1437735d0f43c86232b9770d9a7f6155.png
glide基础使用

当然,glide的提供的接口远不止这些,Google推荐——Glide使用详解 ,Glide 一个专注于平滑滚动的图片加载和缓存库 ;其余的使用请自行百度。

glide的源码主包分为load(图片加载主包)、manager(生命周期管理)、module(glide配置)、provider(内容提供方,提供ModelLoader、Encoder、Decoder)、request(定义请求、animation、target)以及其余一些帮助类。

loader包

loader包最重要,定义了图片加载的主要功能。包含了model(数据来源:File、Url、Uri、ResourceId、AssectPath);resource(显示在View中的资源);data(图片加载器,根据model:Url 加载原始数据:InputStream);engine(图片加载引擎)。

loader-model包

model包是loader的子包,定义了数据的来源,例如File、Url、Uri、ResourceId、AssetPath等。通过ModelLoader定义了model的输出,例如stream包下定义了model到InputStream的转化,举个例子:当需要显示网络图片时,调用Glide的时候传入Http Url链接,ModelLoder负责将Url转为InputStream,这中间借助了DataFetcher(HttpUrlFetcher)。

loader-data

loader包的data子包定义了一系列DataFetcher,例如HttpUrlFetcher(获取网络数据,输出InputStream)、StreamAssetPathFetcher(获取Asset文件,输出InputStream)、StreamLocalUriFetcher
(获取本地Uri文件,输出InputStream)等。

loader-resource

DataFetcher加载出data后,需要转化为resource,这个过程需要借助ResourceDecoder,例如StreamBitmapDecoder将InputStream转为BitmapResource;FileDecoder将File转为FileResource等。resource目录还定义了transformation和transcode,transformation实现图片的转换,例如图片加圆角。加阴影等;transcode实现诸如BitmapResource到DrawableResource的转换等。

loader-engine

engine子包下定义了图片加载引擎,包括三级缓存的接口;BitmapPool图片复用池;Engine、EngineJob、DecoderJob、EnginRunable为主要的加载接口,它们之间的关系如下:

img_196e49e5b19a34b54c88331b26ab35db.jpe
engin组件关系

manager包

manager包实现了Activity生命周期的监控,LifeCycle、LifeCycleListener、RequestTracker、ActivityFragmentLifecycle等类实现了request的监控;ConnectivityMonitor实现了网络的监听。后面会有详细的一个章节进行描述。

module包

GlideModule可用于自定义glide配置,如SD卡缓存大小和位置,配置方法如下:

img_7bc4ad71a59c66c363726c9511cd5b60.png
GldieModlue配置

provider包

作为内容提供方,可以当成一个工厂,只不过里面所有的数据在Glide初始化的时候都填写进去了。DataLoadProvider提供Encoder(诸如InputStream与Bitmap间的转换)和Decoder(诸如Bitmap和OutputStream)实现;DataLoadProviderRegistry记录了glide用到的所有DataLoadProvider,在Glide初始化时,调用register方法注册完成。

request包

定义了一系列Target,例如BitmapImageViewTarget,封装了ImageView,并显示Bitmap;request包还定义了一些animation;除此之外还有一个组主要的GenericRequest类和GenericRequestBuilder类,该类定义了加载请求,每个Terget展示图片都会对应一个Request,并有begin、pause、cancel、clear、releaseResource等接口。

besides

除了以上这些包外,glide源码里面还有一些主要的类,BitmapRequestBuilder和DrawableRequestBuilder分别定义Bitmap和Drawable请求;Glide类是对外公开的接口,是客户端发起请求的起点;RequestManager是request生命周期管理器,对request在不同生命周期场景下做对应的处理。

OK,到这里已经描述了glide源码里面主要的几个模块,下图展示了glide代码架构的全貌:

img_7d65cf010d8e1af9ea6d7fb94d422b4b.jpe
glide架构

自上而下可以按照如下步骤描述,当通过Glide.with().load(url).into(target)加载一个图片时:

1、首先生成一个GlideUrl的model;

2、然后RequestManager产生一个request;

3、调用Engine模块加载图片

  3.1、首先查看三级缓存:活跃内存 -- 内存缓存 -- 磁盘缓存

  3.2、三级缓存查找不到就去网络获取

4、找到Model类型为GlideUrl的ModelLoader,拿到HttpUrlFetcher,下载图片返回InputStream;

5、使用ResourceDecoder将InputStream转为Bitmap;

6、使用Transformation、Transcode进行转换

7、存到cache

8、展示图片

ActiveCache、MemoryCache、BitmapPool

三者的缓存关系如下:

1、在加载图片时,先去MemoryCache中查找图片,找到缓存后,将它移入ActiveCache,并将引用数量加1。

2、当View复用的时候,如果原先的ImageView已经绑定了EngineResource,就需要调用EnginerResource的release方法,该方法会判断该Resource的引用数量是否为0,如果为0,就对资源进行释放。

3、第2步Resource引用数量为0时,将Resource从ActiveResource中移除,并加入MemoryCache中,以供下次使用。

4、当MemoryCache达到上限的时候,将里面最近未使用的Bitmap移除到BitmapPool中,用来做Bitmap复用,防止内存抖动。

5、当ActiveCache或者MemoryCache中都没有指定图片时,就从磁盘缓存或者网络加载。

6、内存缓存没有时,先从磁盘缓存加载,加载到原始数据后利用BitmapPool中可以复用的Bitmap进行图片复用,加载成功后回调ResourceCallback的onResourceReady进行回调,回调里面将原始资源组装成EngineResource,并将Resource加入ActiveResource。

7、从网络获取的时候,会将网络数据缓存到本地,其余过程和6一样

目录
相关文章
|
2月前
|
机器学习/深度学习 计算机视觉 网络架构
是VGG网络的主要特点和架构描述
是VGG网络的主要特点和架构描述:
31 1
|
设计模式 运维 架构师
我懵了!架构描述是个啥玩意?
我懵了!架构描述是个啥玩意?
80 0
|
架构师 uml
「企业架构」使用TOGAF 企业连续体对架构描述进行分类
「企业架构」使用TOGAF 企业连续体对架构描述进行分类
|
XML 数据格式 网络架构
WCF技术剖析之二十五: 元数据(Metadata)架构体系全景展现[元数据描述篇]
原文:WCF技术剖析之二十五: 元数据(Metadata)架构体系全景展现[元数据描述篇] 在[WS标准篇]中我花了很大的篇幅介绍了WS-MEX以及与它相关的WS规范:WS-Policy、WS-Transfer和WSDL,因为WCF元数据结构体系完全是基于WS-MEX等相关的规范之上。
1012 0
|
3天前
|
监控 负载均衡 API
从单体到微服务:架构转型之道
【8月更文挑战第17天】从单体架构到微服务架构的转型是一项复杂而系统的工程,需要综合考虑技术、团队、文化等多个方面的因素。通过合理的规划和实施策略,可以克服转型过程中的挑战,实现系统架构的升级和优化。微服务架构以其高度的模块化、可扩展性和灵活性,为业务的持续发展和创新提供了坚实的技术保障。
|
12天前
|
Cloud Native 云计算 微服务
云原生时代:企业分布式应用架构的惊人蜕变,从SOA到微服务的大逃亡!
【8月更文挑战第8天】在云计算与容器技术推动下,企业分布式应用架构正经历从SOA到微服务再到云原生的深刻变革。SOA强调服务重用与组合,通过标准化接口实现服务解耦;微服务以细粒度划分服务,增强系统灵活性;云原生架构借助容器化与自动化技术简化部署与管理。每一步演进都为企业带来新的技术挑战与机遇。
48 6
|
10天前
|
设计模式 监控 API
探索微服务架构中的API网关模式
在微服务的宇宙里,API网关是连接星辰的桥梁。它不仅管理着服务间的通信流量,还肩负着保护、增强和监控微服务集群的重任。本文将带你走进API网关的世界,了解其如何成为微服务架构中不可或缺的一环,以及它在实际应用中扮演的角色和面临的挑战。
|
18天前
|
运维 监控 负载均衡
探索微服务架构中的API网关
在现代软件开发中,微服务架构已成为设计灵活、可扩展系统的首选方法。本文将深入探讨API网关的核心作用,包括它如何简化客户端与微服务之间的交互,提供请求路由、负载均衡、认证、限流及监控等关键功能。我们将通过实际案例分析,揭示API网关在提升系统性能、增强安全性和提高开发效率方面的重要性。