科学家揭示灵长类早期胚胎发育多能性的变化模式

简介:

8月28日,《基因组研究》(Genome Research)以Single cell RNA-sequencing reveals the existence of naive and primed pluripotency in pre-implantation rhesus monkey embryos为题,在线发表了中国科学院昆明动物研究所郑萍课题组和中国科学院上海生命科学研究院计算生物学研究所韩敬东课题组合作的研究成果。该研究通过单细胞转录组方法,分析了猕猴着床前胚胎发育过程中,早期细胞命运分化调控,并重点研究了四个囊胚发育阶段(早期囊胚,中期囊胚,晚期囊胚,孵化囊胚)和上胚层细胞(Epiblast cells)多能性的动态变化。发现猕猴早期胚胎细胞命运决定模式和调控与人类胚胎极其相似,首次揭示了灵长类着床前胚胎中存在发育多能性由原始态(naive)向始发态(primed)的转变过程。
发育多能性是指一种细胞分化为其他细胞类型的潜能。在早期胚胎发育过程中,胚胎细胞的多能性随着发育的推进而逐渐下降。从受精卵到早期的卵裂球,细胞具发育全能性(totipotency),能发育为胚胎和胚外组织;而当胚胎发育至囊胚期,内细胞团的上胚层细胞(Epiblast cells)便失去了发育形成胚外组织的能力,但仍保留形成胚体的能力,即发育多能性(pluripotency)。多能性状态随着发育程度的不同,可以分为原始多能态(Naive pluripotency)和始发多能态(primed pluripotency)。原始多能态较始发多能态具更强的嵌合体形成能力和发育潜能,两者在雌性细胞X染色体的激活状态、表观遗传特征、代谢特征及多能性调控网络等方面存在显著差异。
已知在啮齿类中,着床前的上胚层细胞处于原始多能态(Naive pluripotency),在着床后转换为始发多能态(Primed pluripotency),因此很容易从着床前胚胎中建立具原始多能态的胚胎干细胞系。在灵长类中,早期胚胎多能性状态的变化模式尚不清楚。但是,从人和非人灵长类着床前胚胎中建立的胚胎干细胞系,都表现出始发多能态特征,提示灵长类早期胚胎的多能性变化模式可能不同于啮齿类。
为了研究灵长类早期胚胎多能性的动态变化,研究人员收集了猕猴囊胚发育的4个时期,对每个时期上胚层细胞进行了单细胞转录组分析,通过在蛋白编码基因层面以及非编码因子层面(包括转座子和长非编码RNA)的分析,以及构建多能性网络相关基因等计算方法,发现灵长类着床前胚胎细胞的发育多能性存在不同的状态。在早期(Early blastocyst)和中期囊胚(Middle blastocyst)时期,上胚层细胞处于原始多能态,此后原始多能性特征丢失,并逐步获得始发多能态特征。因此,不同于啮齿类,灵长类的原始多能态存在的时间窗口极其短暂。该研究解释了灵长类原始多能态胚胎干细胞难以获得的原因,也为如何从囊胚中直接建立具原始多能态灵长类多能干细胞提供了适合的时间窗口。
韩敬东课题组的刘登辉和郑萍课题组的王鑫轶、何大健、孙春丽为文章共同第一作者,韩敬东和郑萍为文章共同通讯作者。该工作得到中科院先导专项B(XDB13010600)、先导专项A(XDA01010203,XDA01010303),以及动物进化与遗传前沿交叉卓越创新中心等的支持。

fd9e0d2ef0e88c26b76333f24fb1b9659c59e7e8

灵长类和啮齿类早期胚胎具不同的多能态变化特征。


原文发布时间为:2018-09-7

本文来自云栖社区合作伙伴“中科院之声”,了解相关信息可以关注“中科院之声”。

相关文章
|
5天前
|
人工智能 自然语言处理 调度
Casevo:开源的社会传播模拟系统,基于 AI 模拟人类认知、决策和社会交互,预测社会传播现象
Casevo 是中国传媒大学推出的开源社会传播模拟系统,结合大语言模型和多智能体技术,支持复杂社会网络建模与动态交互,适用于新闻传播、社会计算等领域。
55 22
Casevo:开源的社会传播模拟系统,基于 AI 模拟人类认知、决策和社会交互,预测社会传播现象
|
3月前
|
机器学习/深度学习 数据采集 人工智能
揭开大模型幻觉之谜:深入剖析数据偏差与模型局限性如何联手制造假象,并提供代码实例助你洞悉真相
【10月更文挑战第2天】近年来,大规模预训练模型(大模型)在自然语言处理和计算机视觉等领域取得卓越成绩,但也存在“大模型幻觉”现象,即高准确率并不反映真实理解能力。这主要由数据偏差和模型局限性导致。通过平衡数据集和引入正则化技术可部分缓解该问题,但仍需学界和业界共同努力。
55 4
|
4月前
|
人工智能
合成生物学:设计生命的新时代
【9月更文挑战第19天】合成生物学作为21世纪新兴交叉学科,融合基因工程、系统生物学与计算机科学,通过工程化设计理念改造生物体遗传物质,开创人工生命体新时代。它旨在构建自然界中不存在的生物系统,应对能源、材料、健康和环保等全球挑战。核心技术包括基因编辑(如CRISPR/Cas9)、基因合成及系统生物学方法。应用领域涵盖医药、化学品与生物材料、农业及食品,展现出巨大潜力。预计到2025年,其经济价值将达1000亿美元。尽管面临法律、伦理等挑战,但合成生物学正引领创新未来,助力人类可持续发展。
|
机器学习/深度学习 编解码 人工智能
斯坦福最新研究警告:别太迷信大模型涌现能力,那是度量选择的结果(1)
斯坦福最新研究警告:别太迷信大模型涌现能力,那是度量选择的结果
193 0
|
机器学习/深度学习
斯坦福最新研究警告:别太迷信大模型涌现能力,那是度量选择的结果(2)
斯坦福最新研究警告:别太迷信大模型涌现能力,那是度量选择的结果
187 0
|
机器学习/深度学习 编解码 人工智能
中科院团队新研究:人工智能有助于从空间分辨转录组学中识别组织亚结构
中科院团队新研究:人工智能有助于从空间分辨转录组学中识别组织亚结构
170 0
|
存储 算法 数据可视化
Science | 智能计算揭示前生命化学网络中合成的连接、出现和自我再生
Science | 智能计算揭示前生命化学网络中合成的连接、出现和自我再生
144 0
Science | 智能计算揭示前生命化学网络中合成的连接、出现和自我再生
两团队在《自然》上发布重要抗癌研究成果,消化系统肿瘤或有望治愈
在细胞水平以及模型小鼠身上证实,WRN和MSI是合成致死的“好搭档”。
595 0