长文慎入-探索Java并发编程与高并发解决方案

简介: 所有示例代码,请见/下载于https://github.com/Wasabi1234/concurrency高并发处理的思路及手段1 基本概念1.

所有示例代码,请见/下载于
https://github.com/Wasabi1234/concurrency

img_6a0b1613c35351f35bcb4166557c76d2.png

img_bf036cb63de51eeb110b043c05266c72.png
高并发处理的思路及手段

img_a6fb0ec6c446de186c307c896e2521ee.png

1 基本概念

1.1 并发

同时拥有两个或者多个线程,如果程序在单核处理器上运行多个线程将交替地换入或者换出内存,这些线程是同时“存在"的,每个线程都处于执行过程中的某个状态,如果运行在多核处理器上,此时,程序中的每个线程都将分配到一个处理器核上,因此可以同时运行.

1.2 高并发( High Concurrency)

互联网分布式系统架构设计中必须考虑的因素之一,通常是指,通过设计保证系统能够同时并行处理很多请求.

1.3 区别与联系

  • 并发: 多个线程操作相同的资源,保证线程安全,合理使用资源
  • 高并发:服务能同时处理很多请求,提高程序性能

2 CPU

2.1 CPU 多级缓存

img_391c3ae7eeb1206d5d4c4e532cecc68c.png
  • 为什么需要CPU cache
    CPU的频率太快了,快到主存跟不上
    如此,在处理器时钟周期内,CPU常常需要等待主存,浪费资源。所以cache的出现,是为了缓解CPU和内存之间速度的不匹配问题(结构:cpu-> cache-> memory ).
  • CPU cache的意义
    1. 时间局部性
      如果某个数据被访问,那么在不久的将来它很可能被再次访问
    2. 空间局部性
      如果某个数据被访问,那么与它相邻的数据很快也可能被访问

2.2 缓存一致性(MESI)

用于保证多个 CPU cache 之间缓存共享数据的一致

  • M-modified被修改
    该缓存行只被缓存在该 CPU 的缓存中,并且是被修改过的,与主存中数据是不一致的,需在未来某个时间点写回主存,该时间是允许在其他CPU 读取主存中相应的内存之前,当这里的值被写入主存之后,该缓存行状态变为 E
  • E-exclusive独享
    缓存行只被缓存在该 CPU 的缓存中,未被修改过,与主存中数据一致
    可在任何时刻当被其他 CPU读取该内存时变成 S 态,被修改时变为 M态
  • S-shared共享
    该缓存行可被多个 CPU 缓存,与主存中数据一致
  • I-invalid无效


    img_4cc963828e5e31b7269d3ab6d616308e.png
  • 乱序执行优化
    处理器为提高运算速度而做出违背代码原有顺序的优化

并发的优势与风险

img_14fdcede9f93e14ffe4a2212012eb18b.png

3 项目准备

3.1 项目初始化

img_7f41eb1c85c398a17b0bbb5f71c40192.png
自定义4个基本注解

img_2b15780ea867ff3999c8c14c2c914501.png
随手写个测试类

img_30fd764d7e0ca25b691d930ca07fe332.png
运行正常

3.2 并发模拟-Jmeter压测

img_19a23fb72c8aa30603ecaada9e1fb2b5.png

img_bd4f8ccc6ac65a7a36a41073ece18175.png

img_04225535e84f19a926c03ce7b9f230e6.png
添加"查看结果数"和"图形结果"监听器

img_9bc5d2a417ca8aba3c73f156aa179122.png
log view 下当前日志信息

img_22bb26f19935a1013a98d9989c93feba.png
图形结果

3.3 并发模拟-代码

CountDownLatch

img_a052c03b4956f607c6227e97b80b4017.png
可阻塞线程,并保证当满足特定条件时可继续执行

Semaphore(信号量)

img_85f1bf413cf46899ba17120f316e4947.png
可阻塞线程,控制同一时间段内的并发量

以上二者通常和线程池搭配

下面开始做并发模拟

package com.mmall.concurrency;

import com.mmall.concurrency.annoations.NotThreadSafe;
import lombok.extern.slf4j.Slf4j;

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Semaphore;

/**
 * @author shishusheng
 * @date 18/4/1
 */
@Slf4j
@NotThreadSafe
public class ConcurrencyTest {

    /**
     * 请求总数
     */
    public static int clientTotal = 5000;

    /**
     * 同时并发执行的线程数
     */
    public static int threadTotal = 200;

    public static int count = 0;

    public static void main(String[] args) throws Exception {
        //定义线程池
        ExecutorService executorService = Executors.newCachedThreadPool();
        //定义信号量,给出允许并发的线程数目
        final Semaphore semaphore = new Semaphore(threadTotal);
        //统计计数结果
        final CountDownLatch countDownLatch = new CountDownLatch(clientTotal);
        //将请求放入线程池
        for (int i = 0; i < clientTotal ; i++) {
            executorService.execute(() -> {
                try {
                    //信号量的获取
                    semaphore.acquire();
                    add();
                    //释放
                    semaphore.release();
                } catch (Exception e) {
                    log.error("exception", e);
                }
                countDownLatch.countDown();
            });
        }
        countDownLatch.await();
        //关闭线程池
        executorService.shutdown();
        log.info("count:{}", count);
    }

    /**
     * 统计方法
     */
    private static void add() {
        count++;
    }
}

运行发现结果随机,所以非线程安全

4线程安全性

4.1 线程安全性

当多个线程访问某个类时,不管运行时环境采用何种调度方式或者这些进程将如何交替执行,并且在主调代码中不需要任何额外的同步或协同,这个类都能表现出正确的行为,那么就称这个类是线程安全的

4.2 原子性

4.2.1 Atomic 包

  • AtomicXXX:CAS,Unsafe.compareAndSwapInt
    提供了互斥访问,同一时刻只能有一个线程来对它进行操作
package com.mmall.concurrency.example.atomic;

import com.mmall.concurrency.annoations.ThreadSafe;
import lombok.extern.slf4j.Slf4j;

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Semaphore;
import java.util.concurrent.atomic.AtomicLong;

/**
 * @author shishusheng
 */
@Slf4j
@ThreadSafe
public class AtomicExample2 {

    /**
     * 请求总数
     */
    public static int clientTotal = 5000;

    /**
     * 同时并发执行的线程数
     */
    public static int threadTotal = 200;

    /**
     * 工作内存
     */
    public static AtomicLong count = new AtomicLong(0);

    public static void main(String[] args) throws Exception {
        ExecutorService executorService = Executors.newCachedThreadPool();
        final Semaphore semaphore = new Semaphore(threadTotal);
        final CountDownLatch countDownLatch = new CountDownLatch(clientTotal);
        for (int i = 0; i < clientTotal ; i++) {
            executorService.execute(() -> {
                try {
                    System.out.println();
                    semaphore.acquire();
                    add();
                    semaphore.release();
                } catch (Exception e) {
                    log.error("exception", e);
                }
                countDownLatch.countDown();
            });
        }
        countDownLatch.await();
        executorService.shutdown();
        //主内存
        log.info("count:{}", count.get());
    }
    
    private static void add() {
        count.incrementAndGet();
        // count.getAndIncrement();
    }
}
package com.mmall.concurrency.example.atomic;

import com.mmall.concurrency.annoations.ThreadSafe;
import lombok.extern.slf4j.Slf4j;
import java.util.concurrent.atomic.AtomicReference;

/**
 * @author shishusheng
 * @date 18/4/3
 */
@Slf4j
@ThreadSafe
public class AtomicExample4 {

    private static AtomicReference<Integer> count = new AtomicReference<>(0);

    public static void main(String[] args) {
        // 2
        count.compareAndSet(0, 2);
        // no
        count.compareAndSet(0, 1);
        // no
        count.compareAndSet(1, 3);
        // 4
        count.compareAndSet(2, 4);
        // no
        count.compareAndSet(3, 5); 
        log.info("count:{}", count.get());
    }
}
img_4a2e098012a53117062a83280f564d92.png
输出结果
  • AtomicReference,AtomicReferenceFieldUpdater


    img_105da3257e9498be28f8a6279c9ce66b.png
  • AtomicBoolean


    img_44686cc93e68574d497a868f22221155.png
  • AtomicStampReference : CAS的 ABA 问题

4.2.2 锁

synchronized:依赖 JVM

  • 修饰代码块:大括号括起来的代码,作用于调用的对象
  • 修饰方法: 整个方法,作用于调用的对象


    img_fd09b1ff7f7947265baa0829cfc8c124.png
  • 修饰静态方法:整个静态方法,作用于所有对象


    img_61e0d1224f8d87021d63d4ded57cbf0f.png
package com.mmall.concurrency.example.count;

import com.mmall.concurrency.annoations.ThreadSafe;
import lombok.extern.slf4j.Slf4j;

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Semaphore;

/**
 * @author shishusheng
 */
@Slf4j
@ThreadSafe
public class CountExample3 {

    /**
     * 请求总数
     */
    public static int clientTotal = 5000;

    /**
     * 同时并发执行的线程数
     */
    public static int threadTotal = 200;

    public static int count = 0;

    public static void main(String[] args) throws Exception {
        ExecutorService executorService = Executors.newCachedThreadPool();
        final Semaphore semaphore = new Semaphore(threadTotal);
        final CountDownLatch countDownLatch = new CountDownLatch(clientTotal);
        for (int i = 0; i < clientTotal ; i++) {
            executorService.execute(() -> {
                try {
                    semaphore.acquire();
                    add();
                    semaphore.release();
                } catch (Exception e) {
                    log.error("exception", e);
                }
                countDownLatch.countDown();
            });
        }
        countDownLatch.await();
        executorService.shutdown();
        log.info("count:{}", count);
    }

    private synchronized static void add() {
        count++;
    }
}

synchronized 修正计数类方法

  • 修饰类:括号括起来的部分,作用于所有对象
    子类继承父类的被 synchronized 修饰方法时,是没有 synchronized 修饰的!!!

Lock: 依赖特殊的 CPU 指令,代码实现

4.2.3 对比

  • synchronized: 不可中断锁,适合竞争不激烈,可读性好
  • Lock: 可中断锁,多样化同步,竞争激烈时能维持常态
  • Atomic: 竞争激烈时能维持常态,比Lock性能好; 只能同步一
    个值

4.3 可见性

一个线程对主内存的修改可以及时的被其他线程观察到

4.3.1 导致共享变量在线程间不可见的原因

  • 线程交叉执行
  • 重排序结合线程交叉执行
  • 共享变量更新后的值没有在工作内存与主存间及时更新

4.3.2 可见性之synchronized

JMM关于synchronized的规定

  • 线程解锁前,必须把共享变量的最新值刷新到主内存
  • 线程加锁时,将清空工作内存中共享变量的值,从而使
    用共享变量时需要从主内存中重新读取最新的值(加锁与解锁是同一把锁)

4.3.3 可见性之volatile

通过加入内存屏障和禁止重排序优化来实现

  • 对volatile变量写操作时,会在写操作后加入一条store
    屏障指令,将本地内存中的共享变量值刷新到主内存
  • 对volatile变量读操作时,会在读操作前加入一条load
    屏障指令,从主内存中读取共享变量


    img_2cdfdbfd4000375f8f235ad3f1b94013.png
    volatile 写

    img_bd78a8a91e1e053102ab133a050aab68.png
    volatile 读

    img_f3a2eb25f50d07e4ef9560bb94c75b26.png
    计数类之 volatile 版,非线程安全的
  • volatile使用
volatile boolean inited = false;

//线程1:
context = loadContext();
inited= true;

// 线程2:
while( !inited ){
    sleep();
}
doSomethingWithConfig(context)

4.4 有序性

一个线程观察其他线程中的指令执行顺序,由于指令重排序的存在,该观察结果一般杂乱无序

JMM允许编译器和处理器对指令进行重排序,但是重排序过程不会影响到单线程程序的执行,却会影响到多线程并发执行的正确性

4.4.1 happens-before 规则

5发布对象

img_116a3ce151d7b1445ee82359d8511ce2.png

img_dad8bf8a283de3b6e8220623cdeff3ae.png
发布对象

img_b22e279f3284398fc5a6c3c2460f8256.png
对象逸出

5.1 安全发布对象

img_b7a5287e934475759fd485b6d1294c73.png

img_228f19af533783e91a39294f8c1681d6.png
非线程安全的懒汉模式

img_e8d0abedbd4bed33cdc5892a9b2e1255.png
饿汉模式

img_656ed63b20b576829c82f33e9d11be26.png
线程安全的懒汉模式
package com.mmall.concurrency.example.singleton;

import com.mmall.concurrency.annoations.NotThreadSafe;

/**
 * 懒汉模式 -》 双重同步锁单例模式
 * 单例实例在第一次使用时进行创建
 * @author shishusheng
 */
@NotThreadSafe
public class SingletonExample4 {

    /**
     * 私有构造函数
     */
    private SingletonExample4() {

    }

    // 1、memory = allocate() 分配对象的内存空间
    // 2、ctorInstance() 初始化对象
    // 3、instance = memory 设置instance指向刚分配的内存

    // JVM和cpu优化,发生了指令重排

    // 1、memory = allocate() 分配对象的内存空间
    // 3、instance = memory 设置instance指向刚分配的内存
    // 2、ctorInstance() 初始化对象

    /**
     * 单例对象
     */
    private static SingletonExample4 instance = null;

    /**
     * 静态的工厂方法
     *
     * @return
     */
    public static SingletonExample4 getInstance() {
        // 双重检测机制 // B
        if (instance == null) {        
            // 同步锁
            synchronized (SingletonExample4.class) { 
                if (instance == null) {
                    // A - 3
                    instance = new SingletonExample4(); 
                }
            }
        }
        return instance;
    }
}
img_6783fda31724b08ebfebb3fae7f976d1.png

img_e72422cce9a1b0bac80a2a8dc053b040.png

7 AQS

7.1 介绍

img_b1e2effacc72845c5a33887343fe1799.png
数据结构
  • 使用Node实现FIFO队列,可以用于构建锁或者其他同步装置的基础框架
  • 利用了一个int类型表示状态
  • 使用方法是继承
  • 子类通过继承并通过实现它的方法管理其状态{acquire 和release} 的方法操纵状态
  • 可以同时实现排它锁和共享锁模式(独占、共享)
    同步组件

CountDownLatch

package com.mmall.concurrency.example.aqs;

import lombok.extern.slf4j.Slf4j;

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

/**
 * @author shishusheng
 */
@Slf4j
public class CountDownLatchExample1 {

    private final static int threadCount = 200;

    public static void main(String[] args) throws Exception {

        ExecutorService exec = Executors.newCachedThreadPool();

        final CountDownLatch countDownLatch = new CountDownLatch(threadCount);

        for (int i = 0; i < threadCount; i++) {
            final int threadNum = i;
            exec.execute(() -> {
                try {
                    test(threadNum);
                } catch (Exception e) {
                    log.error("exception", e);
                } finally {
                    countDownLatch.countDown();
                }
            });
        }
        countDownLatch.await();
        log.info("finish");
        exec.shutdown();
    }

    private static void test(int threadNum) throws Exception {
        Thread.sleep(100);
        log.info("{}", threadNum);
        Thread.sleep(100);
    }
}
package com.mmall.concurrency.example.aqs;

import lombok.extern.slf4j.Slf4j;

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;

/**
* 指定时间内处理任务
* 
* @author shishusheng 
* 
*/
@Slf4j
public class CountDownLatchExample2 {

   private final static int threadCount = 200;

   public static void main(String[] args) throws Exception {

       ExecutorService exec = Executors.newCachedThreadPool();

       final CountDownLatch countDownLatch = new CountDownLatch(threadCount);

       for (int i = 0; i < threadCount; i++) {
           final int threadNum = i;
           exec.execute(() -> {
               try {
                   test(threadNum);
               } catch (Exception e) {
                   log.error("exception", e);
               } finally {
                   countDownLatch.countDown();
               }
           });
       }
       countDownLatch.await(10, TimeUnit.MILLISECONDS);
       log.info("finish");
       exec.shutdown();
   }

   private static void test(int threadNum) throws Exception {
       Thread.sleep(100);
       log.info("{}", threadNum);
   }
}

Semaphore用法

img_08ae05f9ab20e3be8c49e6896f01bf67.png

img_775f52f3aaaf93513123aa3d389aabce.png

img_8605a01d8b526f8b47e5f1c4a0fb4f63.png

CycliBarrier

package com.mmall.concurrency.example.aqs;

import lombok.extern.slf4j.Slf4j;

import java.util.concurrent.CyclicBarrier;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

/**
 * @author shishusheng
 */
@Slf4j
public class CyclicBarrierExample1 {

    private static CyclicBarrier barrier = new CyclicBarrier(5);

    public static void main(String[] args) throws Exception {

        ExecutorService executor = Executors.newCachedThreadPool();

        for (int i = 0; i < 10; i++) {
            final int threadNum = i;
            Thread.sleep(1000);
            executor.execute(() -> {
                try {
                    race(threadNum);
                } catch (Exception e) {
                    log.error("exception", e);
                }
            });
        }
        executor.shutdown();
    }

    private static void race(int threadNum) throws Exception {
        Thread.sleep(1000);
        log.info("{} is ready", threadNum);
        barrier.await();
        log.info("{} continue", threadNum);
    }
}
img_b052be420ba97107c8d06e5996c05178.png
package com.mmall.concurrency.example.aqs;

import lombok.extern.slf4j.Slf4j;

import java.util.concurrent.CyclicBarrier;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;

/**
 * @author shishusheng
 */
@Slf4j
public class CyclicBarrierExample2 {

    private static CyclicBarrier barrier = new CyclicBarrier(5);

    public static void main(String[] args) throws Exception {

        ExecutorService executor = Executors.newCachedThreadPool();

        for (int i = 0; i < 10; i++) {
            final int threadNum = i;
            Thread.sleep(1000);
            executor.execute(() -> {
                try {
                    race(threadNum);
                } catch (Exception e) {
                    log.error("exception", e);
                }
            });
        }
        executor.shutdown();
    }

    private static void race(int threadNum) throws Exception {
        Thread.sleep(1000);
        log.info("{} is ready", threadNum);
        try {
            barrier.await(2000, TimeUnit.MILLISECONDS);
        } catch (Exception e) {
            log.warn("BarrierException", e);
        }
        log.info("{} continue", threadNum);
    }
}
img_6b9ed55f45a6e7ae1dc041091aa3a991.png
await 超时导致程序抛异常
package com.mmall.concurrency.example.aqs;

import lombok.extern.slf4j.Slf4j;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Semaphore;
/**
 * @author shishusheng
 */
@Slf4j
public class SemaphoreExample3 {

    private final static int threadCount = 20;

    public static void main(String[] args) throws Exception {

        ExecutorService exec = Executors.newCachedThreadPool();

        final Semaphore semaphore = new Semaphore(3);

        for (int i = 0; i < threadCount; i++) {
            final int threadNum = i;
            exec.execute(() -> {
                try {
                    // 尝试获取一个许可
                    if (semaphore.tryAcquire()) {
                        test(threadNum);
                        // 释放一个许可
                        semaphore.release();
                    }
                } catch (Exception e) {
                    log.error("exception", e);
                }
            });
        }
        exec.shutdown();
    }

    private static void test(int threadNum) throws Exception {
        log.info("{}", threadNum);
        Thread.sleep(1000);
    }


}

9 线程池

9.1 newCachedThreadPool

img_313819e24829e7a3396a87ecb12f4372.png

9.2 newFixedThreadPool

img_ddb0658cb68e4ad08eecb2286d4c7eab.png

9.3 newSingleThreadExecutor

看出是顺序执行的


img_4c407b7683773c00490b13503a30483a.png

9.4 newScheduledThreadPool

img_2bf45c51497b92ac3caa6f91db355bdc.png

img_2f6cfe21f1ccd601d7123fff534abcf0.png

10 死锁

img_47ebbc8a293f93eab409c602908791bd.png

img_9d0de0f2ad83f9d9578798d6e8f37752.png
目录
相关文章
|
22小时前
|
安全 Java 调度
深入理解Java并发编程:线程安全与性能优化
【5月更文挑战第12天】 在现代软件开发中,多线程编程是提升应用程序性能和响应能力的关键手段之一。特别是在Java语言中,由于其内置的跨平台线程支持,开发者可以轻松地创建和管理线程。然而,随之而来的并发问题也不容小觑。本文将探讨Java并发编程的核心概念,包括线程安全策略、锁机制以及性能优化技巧。通过实例分析与性能比较,我们旨在为读者提供一套既确保线程安全又兼顾性能的编程指导。
|
2天前
|
安全 Java
深入理解Java并发编程:线程安全与性能优化
【5月更文挑战第11天】在Java并发编程中,线程安全和性能优化是两个重要的主题。本文将深入探讨这两个方面,包括线程安全的基本概念,如何实现线程安全,以及如何在保证线程安全的同时进行性能优化。我们将通过实例和代码片段来说明这些概念和技术。
2 0
|
2天前
|
Java 调度
Java并发编程:深入理解线程池
【5月更文挑战第11天】本文将深入探讨Java中的线程池,包括其基本概念、工作原理以及如何使用。我们将通过实例来解释线程池的优点,如提高性能和资源利用率,以及如何避免常见的并发问题。我们还将讨论Java中线程池的实现,包括Executor框架和ThreadPoolExecutor类,并展示如何创建和管理线程池。最后,我们将讨论线程池的一些高级特性,如任务调度、线程优先级和异常处理。
|
2天前
|
存储 Java 数据库连接
Java中文乱码浅析解决方案
Java中文乱码浅析解决方案
8 0
|
2天前
|
缓存 Java 数据库
Java并发编程学习11-任务执行演示
【5月更文挑战第4天】本篇将结合任务执行和 Executor 框架的基础知识,演示一些不同版本的任务执行Demo,并且每个版本都实现了不同程度的并发性。
20 4
Java并发编程学习11-任务执行演示
|
3天前
|
存储 安全 Java
12条通用编程原则✨全面提升Java编码规范性、可读性及性能表现
12条通用编程原则✨全面提升Java编码规范性、可读性及性能表现
|
3天前
|
缓存 Java 程序员
关于创建、销毁对象⭐Java程序员需要掌握的8个编程好习惯
关于创建、销毁对象⭐Java程序员需要掌握的8个编程好习惯
关于创建、销毁对象⭐Java程序员需要掌握的8个编程好习惯
|
5月前
|
Java
在高并发环境下,再次认识java 锁
在高并发环境下,再次认识java 锁
38 0
|
5月前
|
消息中间件 NoSQL Java
Java高级开发:高并发+分布式+高性能+Spring全家桶+性能优化
Java高架构师、分布式架构、高可扩展、高性能、高并发、性能优化、Spring boot、Redis、ActiveMQ、Nginx、Mycat、Netty、Jvm大型分布式项目实战学习架构师之路
|
26天前
|
存储 NoSQL Java
探索Java分布式锁:在高并发环境下的同步访问实现与优化
【4月更文挑战第17天】Java分布式锁是解决高并发下数据一致性问题的关键技术,通过Redis、ZooKeeper、数据库等方式实现。它确保多节点共享资源时的同步访问,防止数据不一致。优化策略包括锁超时重试、续期、公平性和性能优化。合理设计分布式锁对支撑大规模分布式系统至关重要。

热门文章

最新文章