Brinson分析简介

简介:

导语:收益归因是一个比较基础、同时相当重要的策略分析工具,本教程旨在帮助大家利用BigQuant自带的Brinson进策略进行绩效归因分析。

分析框架

Brinson的框架可以用来分解投资组合的总收益。尽管计算上很简单,但理论上是有效的,已被各种养老金赞助人、顾问和投资管理人员成功地使用;目前,它被用来表示实际投资组合中的业绩贡献。绩效归因虽然不是新发现的理论,但仍然是一个不断发展的学科。早期关于这一主题的论文主要关注风险调整后的收益,提出了最初的框架,但很少关注多重资产绩效衡量。我们的任务是按照投资客户和经理的决策的重要性排序,然后衡量这些决策对实际计划绩效的整体重要性。

表1说明了分析投资组合收益的框架:

a99c752c9a9760e4f867233427ada5688136bf33

象限Ⅰ表示基准收益(Benchmark Return)。在此,我们将根据其长期投资基准确定投资组合的基准收益率。
一个计划的基准收益是所采用的投资基准的结果。投资基准确定长期资产配置计划(包括资产类别和标准权重),用于控制总体风险和满足投资组合目标。
简而言之,基准确定整个计划的投资组合的标准。要计算策略基准收益率,我们需要:(1)预先说明所有资产类别的权重,以及(2)分配在每种资产类别上的被动(或基准)收益。
象限II表示基准和择时的收益(Benchmark and Timing Return)。这里象限II的收益并不单表示了择时的收益,而是按照基准进行选股加以主动择时的综合收益。择时是指相对于基准,以提高收益和/或降低风险为目的,在资产类比的标准权重上战略地降低或提高它的权重,择时表现了相对于政策回报的增量回报。
象限III表示基准和选股的收益(Benchmark and Security Selection Return)而产生的收益。同样地,这里象限Ⅲ的收益并不单表示了选股的收益,而是按照基准进行择时加以主动选股的综合收益。选股是在一个资产类别中进行主动投资选择,我们将其定义为投资组合的实际资产类别收益率(例如,普通股和债券部分的实际回报率)超过这些类别的被动基准收益率,并由标准的资产配置权重进行加权。
象限IV表示该期间基金总额的实际收益(Actual Portfolio Return)。这是主动进行择时和选股的实际结果。

表2给出了计算这些象限值的方法:

44f6d3bdae3fd0475938c2b4ede143398d6a307f

表3根据四个象限的值,计算出择时(Timing)、股票选择(Security selection)和两种的交互效应(Other),三者共同构成了组合的超额收益:

8e448fb08ff3b6612cf60010346a0cdce4dad466

案例展示

下面我们用一个实际的策略案例来说明如何使用brinson分析。

这个策略是一个比较简单的双均线策略,当短期均线上穿长期均线,出现金叉,则买入;当短期均线下穿长期均线,出现死叉,则卖出。

交易时间我们选择从15年初到17年底,共三年时间。为演示目的,我们没有选择全市场的股票,而是抽了一些股票,这样回测结果跑得快些。

回测结果如下图:

467ebf9cab3cd33df38d1599081fdf6396df8123

调用brinson分析api

当运行完回测的时候,保存下M.trade.v4的返回对象,在案例里我们存在strategy1里。强调一下,现在brinson分析只支持在v4版本上。

然后我们调用brinson_analysis()方法,这个方法会计算brinson分析所需要的数据,应该要不了几分钟。

brinson = strategy1.brinson_analysis()

当brinson对象构建后,我们调用plot_return_path()方法,来获得收益归因的路径图,对应的是上述表2的结果:

brinson.plot_return_path()


a4281b02f0d9fe3248dcdd7148d818d81089c696

其中,RETURN_I是基准收益,相对应的RETURN_IV是组合实际收益。

然后我们来看下最关键的收益贡献分析:

brinson.plot_periods_return_analysis()

b9dc20ed293ad284dec00ba4d632219a48b817bc

图中每根柱子代表相应收益在时间上的累积贡献,不难从上图中发现,这个策略有正的择时贡献,由于我们的双均线策略本来就是择时策略,所以并不奇怪。然而我们的选股收益是负的,说明我们的策略并不具有选股能力,分析我们的样例策略,是一个固定的股票列表,比基准的数量还要少,这个结果也能解释。

如果我们还可以单独看超额收益,如下图,可以看到我们的样例策略还是获得了超额收益。

f15de9ce389f2ee4cce3a936195f19cea5a06b45

小结:分解影响投资组合表现的因素,有利于量化投资管理决策在投资组合表现中发挥的作用;明确投资政策和投资策略之间的区别和联系将有助于进一步阐明这两项活动在投资过程中的作用。简单、准确、完整和可衡量的投资决策过程归因,将使我们进一步认识到投资活动中各部分的重要性,Brinson的理论在分析投资组合表现的决定因素上搭建起了一个简明而完整的框架。


原文发布时间为:2018-08-29

本文来自云栖社区合作伙伴“BigQuant”,了解相关信息可以关注“BigQuant”。

相关文章
|
8月前
|
数据可视化 Linux 索引
可视化工具使用简介
可视化工具使用简介
|
存储 算法 内存技术
多媒体系统简介
一、多媒体系统简介 多媒体系统是指能够处理和展示多种媒体信息的计算机系统。它可以处理和播放音频、视频、图像等多种形式的媒体数据,并提供交互式的操作和用户界面。多媒体系统广泛应用于娱乐、教育、广告、通信等领域。 多媒体系统通常由以下几个组成部分构成: 1. 媒体输入设备:用于将外部的媒体数据输入到计算机系统中,如麦克风、摄像头、扫描仪等。 2. 媒体处理软件:用于对媒体数据进行处理和编辑的软件,如音频编辑软件、视频编辑软件、图像处理软件等。 3. 媒体存储设备:用于存储媒体数据的设备,如硬盘、光盘、闪存等。 4. 媒体输出设备:用于将处理后的媒体数据输出到外部设备或显示器上,如音箱、显示器、投影
366 0
|
XML 监控 Devops
CUNIT简介
CUNIT简介
493 0
CUNIT简介
|
存储 JSON 缓存
数据schemaAvro简介
文章结束给大家来个程序员笑话:[M]     最近在研究Thrift和Avro以及它们的区分,通过各种渠道搜集资料,现整顿出有关Avro的一些资料,方便当前参考。     一、弁言     1、 简介     Avro是Hadoop中的一个子项目,也是Apache中一个独立的项目,Avro是一个基于二进制数据传输高性能的旁边件。
1087 0
|
安全 算法 网络安全
虚拟专用网简介
本文重点讲解虚拟专用网的理论知识,后续文章对具体虚拟专用网进行讲解(包括原理和配置),欢迎持续关注和订阅专栏。
1078 0
|
传感器 自动驾驶 物联网
完整5G系统简介
5G很快就会出现,它将不仅仅是更快的手机速度。了解5G对物联网的潜在影响。
362 0
完整5G系统简介
|
Web App开发 缓存 网络协议
HttpWatch工具简介及使用技巧(转载)
一 概述: HttpWatch强大的网页数据分析工具.集成在Internet Explorer工具栏.包括网页摘要.Cookies管理.缓存管理.消息头发送/接受.字符查询.POST 数据和目录管理功能.报告输出 HttpWatch 是一款能够收集并显示页页深层信息的软件。
1060 0
|
Web App开发 Android开发
hcatalog简介和使用
转自:http://blog.csdn.net/lalaguozhe/article/details/9083905 转自:https://yq.aliyun.com/articles/37442
991 0
|
Web App开发 存储 安全