数据库之架构:主备+分库?主从+读写分离?

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 一、数据库架构原则 高可用 高性能 一致性 扩展性 二、常见的架构方案 方案一:主备架构,只有主库提供读写服务,备库冗余作故障转移用    jdbc:mysql://vip:3306/xxdb 高可用分析:高可用,主库挂了,keepalive(只是一种工具)会自动切换到备库。

一、数据库架构原则

  1. 高可用
  2. 高性能
  3. 一致性
  4. 扩展性

二、常见的架构方案

方案一:主备架构,只有主库提供读写服务,备库冗余作故障转移用

  

jdbc:mysql://vip:3306/xxdb

  1. 高可用分析:高可用,主库挂了,keepalive(只是一种工具)会自动切换到备库。这个过程对业务层是透明的,无需修改代码或配置。
  2. 高性能分析:读写都操作主库,很容易产生瓶颈。大部分互联网应用读多写少,读会先成为瓶颈,进而影响写性能。另外,备库只是单纯的备份,资源利用率50%,这点方案二可解决。
  3. 一致性分析:读写都操作主库,不存在数据一致性问题。
  4. 扩展性分析:无法通过加从库来扩展读性能,进而提高整体性能。
  5. 可落地分析:两点影响落地使用。第一,性能一般,这点可以通过建立高效的索引和引入缓存来增加读性能,进而提高性能。这也是通用的方案。第二,扩展性差,这点可以通过分库分表来扩展。

方案二:双主架构,两个主库同时提供服务,负载均衡

  

jdbc:mysql://vip:3306/xxdb

  1. 高可用分析:高可用,一个主库挂了,不影响另一台主库提供服务。这个过程对业务层是透明的,无需修改代码或配置。
  2. 高性能分析:读写性能相比于方案一都得到提升,提升一倍。
  3. 一致性分析:存在数据一致性问题。请看,一致性解决方案
  4. 扩展性分析:当然可以扩展成三主循环,但笔者不建议(会多一层数据同步,这样同步的时间会更长)。如果非得在数据库架构层面扩展的话,扩展为方案四。
  5. 可落地分析:两点影响落地使用。第一,数据一致性问题,一致性解决方案可解决问题第二,主键冲突问题,ID统一地由分布式ID生成服务来生成可解决问题。

方案三:主从架构,一主多从,读写分离

  

jdbc:mysql://master-ip:3306/xxdb

jdbc:mysql://slave1-ip:3306/xxdb

jdbc:mysql://slave2-ip:3306/xxdb

  1. 高可用分析:主库单点,从库高可用。一旦主库挂了,写服务也就无法提供。
  2. 高性能分析:大部分互联网应用读多写少,读会先成为瓶颈,进而影响整体性能。读的性能提高了,整体性能也提高了。另外,主库可以不用索引,线上从库和线下从库也可以建立不同的索引(线上从库如果有多个还是要建立相同的索引,不然得不偿失;线下从库是平时开发人员排查线上问题时查的库,可以建更多的索引)。
  3. 一致性分析:存在数据一致性问题。请看,一致性解决方案
  4. 扩展性分析:可以通过加从库来扩展读性能,进而提高整体性能。(带来的问题是,从库越多需要从主库拉取binlog日志的端就越多,进而影响主库的性能,并且数据同步完成的时间也会更长)
  5. 可落地分析:两点影响落地使用。第一,数据一致性问题,一致性解决方案可解决问题第二,主库单点问题,笔者暂时没想到很好的解决方案。

注:思考一个问题,一台从库挂了会怎样?读写分离之读的负载均衡策略怎么容错?

方案四:双主+主从架构,看似完美的方案

  

jdbc:mysql://vip:3306/xxdb

jdbc:mysql://slave1-ip:3306/xxdb

jdbc:mysql://slave2-ip:3306/xxdb

  1. 高可用分析:高可用。
  2. 高性能分析:高性能。
  3. 一致性分析:存在数据一致性问题。请看,一致性解决方案
  4. 扩展性分析:可以通过加从库来扩展读性能,进而提高整体性能。(带来的问题同方案二
  5. 可落地分析:同方案二,但数据同步又多了一层,数据延迟更严重

三、一致性解决方案

第一类:主库和从库一致性解决方案

注:图中圈出的是数据同步的地方,数据同步(从库从主库拉取binlog日志,再执行一遍)是需要时间的,这个同步时间内主库和从库的数据会存在不一致的情况。如果同步过程中有读请求,那么读到的就是从库中的老数据。如下图。

  

既然知道了数据不一致性产生的原因,有下面几个解决方案供参考:

  1. 直接忽略,如果业务允许延时存在,那么就不去管它。
  2. 强制读主,采用主备架构方案,读写都走主库。用缓存来扩展数据库读性能 。有一点需要知道:如果缓存挂了,可能会产生雪崩现象,不过一般分布式缓存都是高可用的。
  3. 选择读主,写操作时根据库+表+业务特征生成一个key放到Cache里并设置超时时间(大于等于主从数据同步时间)。读请求时,同样的方式生成key先去查Cache,再判断是否命中。若命中,则读主库,否则读从库。代价是多了一次缓存读写,基本可以忽略。
  4. 半同步复制,等主从同步完成,写请求才返回。就是大家常说的“半同步复制”semi-sync。这可以利用数据库原生功能,实现比较简单。代价是写请求时延增长,吞吐量降低。
  5. 数据库中间件,引入开源(mycat等)或自研的数据库中间层。个人理解,思路同选择读主数据库中间件的成本比较高,并且还多引入了一层。

第二类:DB和缓存一致性解决方案

先来看一下常用的缓存使用方式:

第一步:淘汰缓存;

第二步:写入数据库;

第三步:读取缓存?返回:读取数据库;

第四步:读取数据库后写入缓存。

注:如果按照这种方式,图一,不会产生DB和缓存不一致问题;图二,会产生DB和缓存不一致问题,即4.read先于3.sync执行。如果不做处理,缓存里的数据可能一直是脏数据。解决方式如下:

四、个人的一些见解

1、架构演变

  1. 架构演变一:方案一 -> 方案一+分库分表 -> 方案二+分库分表 -> 方案四+分库分表;
  2. 架构演变二:方案一 -> 方案一+分库分表 -> 方案三+分库分表 -> 方案四+分库分表;
  3. 架构演变三:方案一 -> 方案二 -> 方案四 -> 方案四+分库分表;
  4. 架构演变四:方案一 -> 方案三 -> 方案四 -> 方案四+分库分表;

2、个人见解

  1. 加缓存和索引是通用的提升数据库性能的方式;
  2. 分库分表带来的好处是巨大的,但同样也会带来一些问题,详见数据库之分库分表-垂直?水平?
  3. 不管是主备+分库分表还是主从+读写分离+分库分表,都要考虑具体的业务场景。58到家发展四年,绝大部分的数据库架构还是采用方案一和方案一+分库分表,只有极少部分用方案三+读写分离+分库分表。另外,阿里云提供的数据库云服务也都是主备方案,要想主从+读写分离需要二次架构。
  4. 记住一句话:不考虑业务场景的架构都是耍流氓。
作者: 尜尜人物
使命:为中华软件之崛起而编程
愿景:愿程序员皆因喜欢而编程
相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
2月前
|
NoSQL 关系型数据库 MySQL
微服务架构下的数据库选择:MySQL、PostgreSQL 还是 NoSQL?
在微服务架构中,数据库的选择至关重要。不同类型的数据库适用于不同的需求和场景。在本文章中,我们将深入探讨传统的关系型数据库(如 MySQL 和 PostgreSQL)与现代 NoSQL 数据库的优劣势,并分析在微服务架构下的最佳实践。
|
2月前
|
消息中间件 缓存 监控
优化微服务架构中的数据库访问:策略与最佳实践
在微服务架构中,数据库访问的效率直接影响到系统的性能和可扩展性。本文探讨了优化微服务架构中数据库访问的策略与最佳实践,包括数据分片、缓存策略、异步处理和服务间通信优化。通过具体的技术方案和实例分析,提供了一系列实用的建议,以帮助开发团队提升微服务系统的响应速度和稳定性。
|
1天前
|
缓存 关系型数据库 MySQL
高并发架构系列:数据库主从同步的 3 种方案
本文详解高并发场景下数据库主从同步的三种解决方案:数据主从同步、数据库半同步复制、数据库中间件同步和缓存记录写key同步,旨在帮助解决数据一致性问题。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
高并发架构系列:数据库主从同步的 3 种方案
|
2月前
|
消息中间件 缓存 监控
优化微服务架构中的数据库访问:策略与实践
随着微服务架构的普及,如何高效管理和优化数据库访问成为了关键挑战。本文探讨了在微服务环境中优化数据库访问的策略,包括数据库分片、缓存机制、异步处理等技术手段。通过深入分析实际案例和最佳实践,本文旨在为开发者提供实际可行的解决方案,以提升系统性能和可扩展性。
|
3月前
|
消息中间件 负载均衡 Kafka
【解密Kafka背后的秘密!】为什么Kafka不需要读写分离?深入剖析Kafka架构,带你一探究竟!
【8月更文挑战第24天】Apache Kafka是一款专为高效实时数据处理与传输设计的消息系统,凭借其高吞吐量、低延迟及可扩展性在业界享有盛誉。不同于传统数据库常采用的读写分离策略,Kafka通过独特的分布式架构实现了无需读写分离即可满足高并发需求。其核心包括Producer(生产者)、Consumer(消费者)与Broker(代理),并通过分区复制、消费者组以及幂等性生产者等功能确保了系统的高效运行。本文通过分析Kafka的架构特性及其提供的示例代码,阐述了Kafka为何无需借助读写分离机制就能有效处理大量读写操作。
43 2
|
2月前
|
存储 负载均衡 数据库
探索后端技术:从服务器架构到数据库优化的实践之旅
在当今数字化时代,后端技术作为支撑网站和应用运行的核心,扮演着至关重要的角色。本文将带领读者深入后端技术的两大关键领域——服务器架构和数据库优化,通过实践案例揭示其背后的原理与技巧。无论是对于初学者还是经验丰富的开发者,这篇文章都将提供宝贵的见解和实用的知识,帮助读者在后端开发的道路上更进一步。
|
3月前
|
XML 分布式数据库 数据库
【计算机三级数据库技术】第13章 大规模数据库架构--附思维导图
文章概述了分布式数据库、并行数据库、云计算数据库架构和XML数据库的基本概念、目标、体系结构以及与传统数据库的比较,旨在提供对这些数据库技术的全面理解。
41 1
|
3月前
|
存储 缓存 关系型数据库
Django后端架构开发:缓存机制,接口缓存、文件缓存、数据库缓存与Memcached缓存
Django后端架构开发:缓存机制,接口缓存、文件缓存、数据库缓存与Memcached缓存
60 0
|
3月前
|
存储 前端开发 关系型数据库
Linux 技术架构:前端、后端与数据库的完美融合
【8月更文挑战第25天】本文深入剖析了Linux操作系统的技术架构,重点介绍了前端、后端及数据库三大核心组成部分。Linux前端技术不仅涵盖了图形用户界面(GUI),包括GNOME、KDE等桌面环境,还涉及HTML、CSS、JavaScript等Web前端技术及其相关框架。后端技术则聚焦于Python、Java等多种编程语言、Apache和Nginx等Web服务器以及MySQL、PostgreSQL等数据库管理系统。Linux数据库技术覆盖了关系型和非关系型数据库,如MySQL、MongoDB等,并提供了多种数据库管理工具。
86 0
|
3月前
|
存储 Serverless API
Serverless 架构实现弹幕场景问题之在initializer方法中初始化数据库实例如何解决
Serverless 架构实现弹幕场景问题之在initializer方法中初始化数据库实例如何解决
25 0