java并发面试常识之ArrayBlockingQueue

简介: ArrayBlockingQueue是常用的线程集合,在线程池中也常常被当做任务队列来使用。使用频率特别高。他是维护的是一个循环队列(基于数组实现),循环结构在数据结构中比较常见,但是在源码实现中还是比较少见的。

ArrayBlockingQueue是常用的线程集合,在线程池中也常常被当做任务队列来使用。使用频率特别高。他是维护的是一个循环队列(基于数组实现),循环结构在数据结构中比较常见,但是在源码实现中还是比较少见的。

线程安全的实现

线程安全队列,基本是离不开锁的。ArrayBlockingQueue使用的是ReentrantLock,配合两种Condition,实现了集合的线程安全操作。这里稍微说一个好习惯,下面是成员变量的声明。


    private static final long serialVersionUID = -817911632652898426L;
    final Object[] items;
    int takeIndex;
    int putIndex;
    int count;
    final ReentrantLock lock;
    private final Condition notEmpty;
    private final Condition notFull;
    transient Itrs itrs = null;

赋值的操作基本都是在构造函数里做的。这样有个好处,代码执行可控。成员变量的初始化也是会合并在构造方法里执行的,但是在执行顺序上需要好好斟酌,如果写在构造方法里初始化,则没有相关问题。

阻塞队列的常用场所就是生产者消费者。一般都是生产者放入,消费者从头取数据。下面重点说这两个操作。
这两个操作都是依靠锁来保证线程安全的。

生产操作

    public void put(E e) throws InterruptedException {
        checkNotNull(e);
        final ReentrantLock lock = this.lock;
        lock.lockInterruptibly();
        try {
            while (count == items.length)
                notFull.await();
            enqueue(e);
        } finally {
            lock.unlock();
        }
    }

put等放入操作,首先是获取锁,如果发现数据满了,就通过notFull的condition,来阻塞线程。这里的条件判定一定是用while而不是if,多线程情况下,可以被唤醒后发现又满了。

    private void enqueue(E x) {
        final Object[] items = this.items;
        items[putIndex] = x;
        if (++putIndex == items.length)
            putIndex = 0;
        count++;
        notEmpty.signal();
    }

这个是入队列的操作。首先获取维护的数组。putindex就是放入操作的标志。这个操作会一直加。达到预定的长度后就变成0从头开始计数。这样插入的操作就是一个循环的操作了,count就是用来做计数的,作为能否插入数据的一个标准,插入数据后就通过notEmpty的condition发出一个信号唤醒消费线程。

消费操作

    public E take() throws InterruptedException {
        final ReentrantLock lock = this.lock;
        lock.lockInterruptibly();
        try {
            while (count == 0)
                notEmpty.await();
            return dequeue();
        } finally {
            lock.unlock();
        }
    }

  

消费的方法也是这样。先获取锁,然后进行条件判断,如果没有数据,则阻塞线程。注意点和put一样。

 private E dequeue() {
        final Object[] items = this.items;
        @SuppressWarnings("unchecked")
        E x = (E) items[takeIndex];
        items[takeIndex] = null;
        if (++takeIndex == items.length)
            takeIndex = 0;
        count--;
        if (itrs != null)
            itrs.elementDequeued();
        notFull.signal();
        return x;
    }

取数据的时候,也依靠takeIndex,这是一个标志,这个数值也会一直增加,表示取的第一个数据的位置。如果这个标志走到最后,然后变成0,从头再来。这样保证取出的数据都是fifo的顺序。删除的时候如果发现迭代中,则会修改迭代器的遍历。然后通过notFull的condition来唤醒生产线程。

移除操作

    public boolean remove(Object o) {
        if (o == null) return false;
        final Object[] items = this.items;
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            if (count > 0) {
                final int putIndex = this.putIndex;
                int i = takeIndex;
                do {
                    if (o.equals(items[i])) {
                        removeAt(i);
                        return true;
                    }
                    if (++i == items.length)
                        i = 0;
                } while (i != putIndex);
            }
            return false;
        } finally {
            lock.unlock();
        }
    }

对于remove操作就比较麻烦了,首先获取锁之后,把两个标志位本地化,然后找到要删除的元素的位置。调用removeAt,这里删除需要对标志位做改变。

    void removeAt(final int removeIndex) {
        final Object[] items = this.items;
        if (removeIndex == takeIndex) {
            items[takeIndex] = null;
            if (++takeIndex == items.length)
                takeIndex = 0;
            count--;
            if (itrs != null)
                itrs.elementDequeued();
        } else {
            final int putIndex = this.putIndex;
            for (int i = removeIndex;;) {
                int next = i + 1;
                if (next == items.length)
                    next = 0;
                if (next != putIndex) {
                    items[i] = items[next];
                    i = next;
                } else {
                    items[i] = null;
                    this.putIndex = i;
                    break;
                }
            }
            count--;
            if (itrs != null)
                itrs.removedAt(removeIndex);
        }
        notFull.signal();
    }

如果删除的元素是位置和takeindex一样。那就可以直接删除,然后让删除标志位向后移动。如果不是,则从删除的位置开始,进行后面向前面的数据覆盖的操作。直到遇到putindex的前一个位置。然后把那个位置的数据设置为null。并且把putindex的位置往前移动一格,正在迭代的时候要删除数据并且唤醒生产线程。

目录
相关文章
|
7天前
|
安全 架构师 Java
Java大厂面试高频:Collection 和 Collections 到底咋回答?
Java中的`Collection`和`Collections`是两个容易混淆的概念。`Collection`是集合框架的根接口,定义了集合的基本操作方法,如添加、删除等;而`Collections`是一个工具类,提供了操作集合的静态方法,如排序、查找、同步化等。简单来说,`Collection`关注数据结构,`Collections`则提供功能增强。通过小王的面试经历,我们可以更好地理解这两者的区别及其在实际开发中的应用。希望这篇文章能帮助你掌握这个经典面试题。
25 4
|
7天前
|
监控 Dubbo Java
Java Dubbo 面试题
Java Dubbo相关基础面试题
|
7天前
|
SQL Java 数据库连接
Java MyBatis 面试题
Java MyBatis相关基础面试题
|
7天前
|
存储 监控 算法
Java JVM 面试题
Java JVM(虚拟机)相关基础面试题
|
7天前
|
SQL 监控 druid
Java Druid 面试题
Java Druid 连接池相关基础面试题
|
7天前
|
缓存 安全 算法
Java 多线程 面试题
Java 多线程 相关基础面试题
|
27天前
|
Java
Java社招面试题:& 和 && 的区别,HR的套路险些让我翻车!
今日分享的主题是如何区分&和&&的区别,提高自身面试的能力。主要分为以下四部分。 1、自我面试经历 2、&amp和&amp&amp的不同之处 3、&对&&的不同用回答逻辑解释 4、彩蛋
|
Java
Java并发编程笔记之ArrayBlockingQueue源码分析
JDK 中基于数组的阻塞队列 ArrayBlockingQueue 原理剖析,ArrayBlockingQueue 内部如何基于一把独占锁以及对应的两个条件变量实现出入队操作的线程安全? 首先我们先大概的浏览一下ArrayBlockingQueue 的内部构造,如下类图: 如类图所示,可以看到ArrayBlockingQueue 内部有个数组items 用来存放队列元素,putIndex变量标示入队元素的下标,takeIndex是出队的下标,count是用来统计队列元素个数, 从定义可以知道,这些属性并没有使用valatile修饰,这是因为访问这些变量的使用都是在锁块内被用。
4381 0
|
11天前
|
监控 Java
java异步判断线程池所有任务是否执行完
通过上述步骤,您可以在Java中实现异步判断线程池所有任务是否执行完毕。这种方法使用了 `CompletionService`来监控任务的完成情况,并通过一个独立线程异步检查所有任务的执行状态。这种设计不仅简洁高效,还能确保在大量任务处理时程序的稳定性和可维护性。希望本文能为您的开发工作提供实用的指导和帮助。
57 17
|
21天前
|
Java
Java—多线程实现生产消费者
本文介绍了多线程实现生产消费者模式的三个版本。Version1包含四个类:`Producer`(生产者)、`Consumer`(消费者)、`Resource`(公共资源)和`TestMain`(测试类)。通过`synchronized`和`wait/notify`机制控制线程同步,但存在多个生产者或消费者时可能出现多次生产和消费的问题。 Version2将`if`改为`while`,解决了多次生产和消费的问题,但仍可能因`notify()`随机唤醒线程而导致死锁。因此,引入了`notifyAll()`来唤醒所有等待线程,但这会带来性能问题。
Java—多线程实现生产消费者