机器学习的数学基础(概率论和数理统计篇)

简介: 注:总结来自黄海广博士。

注:总结来自黄海广博士。

相关文章
|
7月前
|
机器学习/深度学习 资源调度
【机器学习】高斯分布-概率密度函数
【1月更文挑战第23天】【机器学习】高斯分布-概率密度函数
【机器学习】高斯分布-概率密度函数
|
7月前
|
机器学习/深度学习 算法 数据挖掘
【机器学习】算法术语、决策函数、概率模型、神经网络的详细讲解(图文解释)
【机器学习】算法术语、决策函数、概率模型、神经网络的详细讲解(图文解释)
251 1
|
2月前
|
机器学习/深度学习 程序员
【机器学习】朴素贝叶斯原理------迅速了解常见概率的计算
【机器学习】朴素贝叶斯原理------迅速了解常见概率的计算
|
3月前
|
机器学习/深度学习 数据采集 存储
一文读懂蒙特卡洛算法:从概率模拟到机器学习模型优化的全方位解析
蒙特卡洛方法起源于1945年科学家斯坦尼斯劳·乌拉姆对纸牌游戏中概率问题的思考,与约翰·冯·诺依曼共同奠定了该方法的理论基础。该方法通过模拟大量随机场景来近似复杂问题的解,因命名灵感源自蒙特卡洛赌场。如今,蒙特卡洛方法广泛应用于机器学习领域,尤其在超参数调优、贝叶斯滤波等方面表现出色。通过随机采样超参数空间,蒙特卡洛方法能够高效地找到优质组合,适用于处理高维度、非线性问题。本文通过实例展示了蒙特卡洛方法在估算圆周率π和优化机器学习模型中的应用,并对比了其与网格搜索方法的性能。
377 1
|
6月前
|
机器学习/深度学习 数据挖掘 Python
机器学习之pandas基础——pandas与概率论的简短碰面
机器学习之pandas基础——pandas与概率论的简短碰面
53 4
|
6月前
|
机器学习/深度学习
技术心得:机器学习的数学基础
技术心得:机器学习的数学基础
44 0
|
6月前
|
机器学习/深度学习 人工智能 算法
【机器学习】概率模型在机器学习中的应用:以朴素贝叶斯分类去为例
【机器学习】概率模型在机器学习中的应用:以朴素贝叶斯分类去为例
115 0
|
7月前
|
机器学习/深度学习 人工智能 数据挖掘
【机器学习】贝叶斯统计中,“先验概率”和“后验概率”的区别?
【5月更文挑战第11天】【机器学习】贝叶斯统计中,“先验概率”和“后验概率”的区别?
|
7月前
|
机器学习/深度学习
【机器学习】贝叶斯统计中,“似然”和“后验概率”有什么区别?
【5月更文挑战第11天】【机器学习】贝叶斯统计中,“似然”和“后验概率”有什么区别?
|
7月前
|
机器学习/深度学习 大数据 程序员
[机器学习]机器学习数学基础(三)
[机器学习]机器学习数学基础(三)
40 0