吴恩达《机器学习》课程总结(8)神经网络表述

简介: 8.1非线性假设(1)无论线性回归还是逻辑回归当特征量太多时,计算的负荷会非常大。如50x50像素有2500特征,如果两两组合将会有25002/2个(接近300万个特征)。普通的线性回归和逻辑回归模型不能有效处理这么多特征,这时候需要用神经网络了。

8.1非线性假设

(1)无论线性回归还是逻辑回归当特征量太多时,计算的负荷会非常大。如50x50像素有2500特征,如果两两组合将会有25002/2个(接近300万个特征)。普通的线性回归和逻辑回归模型不能有效处理这么多特征,这时候需要用神经网络了。

8.2神经元和大脑

大脑的某一块可以经过学习,学会其他功能,比如某一块感受触觉,但是接受视觉训练之后,能够感受视觉。

8.3模型表示1

(1)神经元有树突和轴突,许多树突接受电信号,一个轴突发送电信号。

(2)根据神经元模型,创建逻辑回归模型:

(3)多神经元、多层时,分别称为输入层,掩藏层,输出层:

8.4模型表示2

(1)向量表示比循环编码更高效:

以上只是针对一个训练实例,如果是整个训练集进行计算的话,需要将X进行转置,使得同一个实例在一列。

(2)神经网络比线性回归和逻辑回归更强大,在于前者将特征不断进行高级化。

8.5特征和直观理解1

(1)从本质上讲,神经网络能够通过学习得出其自身的一系列特征。

(2)逻辑与运算

其中θ为[-30,20,20]T.

(3)逻辑或运算

其中θ为[-10,20,20]T

(4)非运算

8.6样本和直观理解II

通过上一节的简单运算构造出复杂运算(同为1或者同为0时取1)

按照这种方法我们可以逐步构造出越来越复杂的函数,也能得到更加厉害的特征值。这就是神经网络厉害之处。

8.7多类分类

如要在一个图片中识别路人,汽车,摩托车,卡车四类,这是神经网络可以设置四个输出,每一个用1或0代表是否有某一类即可。

 

相关文章
|
11天前
|
机器学习/深度学习 人工智能 安全
人工智能与机器学习在网络安全中的应用
人工智能与机器学习在网络安全中的应用
32 0
|
2月前
|
机器学习/深度学习 安全 网络安全
利用机器学习优化网络安全威胁检测
【9月更文挑战第20天】在数字时代,网络安全成为企业和个人面临的重大挑战。传统的安全措施往往无法有效应对日益复杂的网络攻击手段。本文将探讨如何通过机器学习技术来提升威胁检测的效率和准确性,旨在为读者提供一种创新的视角,以理解和实施机器学习在网络安全中的应用,从而更好地保护数据和系统免受侵害。
|
1月前
|
机器学习/深度学习 人工智能 算法
#如何看待诺贝尔物理学奖颁给了机器学习与神经网络?#
2024年诺贝尔物理学奖首次颁发给机器学习与神经网络领域的研究者,标志着这一技术对物理学及多领域应用的深远影响。机器学习和神经网络不仅在生产、金融、医疗等行业展现出高效实用性,还在物理学研究中发挥了重要作用,如数据分析、模型优化和物理量预测等,促进了物理学与人工智能的深度融合与发展。
26 0
|
1月前
|
机器学习/深度学习 算法
【机器学习】揭秘反向传播:深度学习中神经网络训练的奥秘
【机器学习】揭秘反向传播:深度学习中神经网络训练的奥秘
|
1月前
|
机器学习/深度学习 人工智能 算法
【人工智能】人工智能的历史发展与机器学习和神经网络
【人工智能】人工智能的历史发展与机器学习和神经网络
57 0
|
2月前
|
机器学习/深度学习 人工智能 TensorFlow
神经网络入门到精通:Python带你搭建AI思维,解锁机器学习的无限可能
【9月更文挑战第10天】神经网络是开启人工智能大门的钥匙,不仅是一种技术,更是模仿人脑思考的奇迹。本文从基础概念入手,通过Python和TensorFlow搭建手写数字识别的神经网络,逐步解析数据加载、模型定义、训练及评估的全过程。随着学习深入,我们将探索深度神经网络、卷积神经网络等高级话题,并掌握优化模型性能的方法。通过不断实践,你将能构建自己的AI系统,解锁机器学习的无限潜能。
44 0
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。
|
3月前
|
机器学习/深度学习 数据可视化 Python
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
该博客展示了如何通过Python预处理神经网络权重矩阵并将其导出为表格,然后使用Chiplot网站来可视化神经网络的神经元节点之间的连接。
56 0
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码

热门文章

最新文章