Scala入门到精通——第二十九节 Scala数据库编程

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介: 本节主要内容Scala Maven工程的创建Scala JDBC方式访问MySQLSlick简介Slick数据库编程实战SQL与Slick相互转换本课程在多数内容是在官方教程上修改而来的,官方给的例子是H2数据库上的,经过本人改造,用在MySQL数据库上,官方教程地址:http://slick.typesafe.com/doc/2.1.0/sql-to-sl

本节主要内容

  1. Scala Maven工程的创建
  2. Scala JDBC方式访问MySQL
  3. Slick简介
  4. Slick数据库编程实战
  5. SQL与Slick相互转换

本课程在多数内容是在官方教程上修改而来的,官方给的例子是H2数据库上的,经过本人改造,用在MySQL数据库上,官方教程地址:http://slick.typesafe.com/doc/2.1.0/sql-to-slick.html

1. Scala Maven工程的创建

本节的工程项目采用的是Maven Project,在POM.xml文件中添加下面两个依赖就可以使用scala进行JDBC方式及Slick框架操作MySQL数据库:

 <dependency>
        <groupId>mysql</groupId>
        <artifactId>mysql-connector-java</artifactId>
        <version>5.1.18</version>
     </dependency>
     <dependency>
    <groupId>com.typesafe.slick</groupId>
    <artifactId>slick_2.11</artifactId>
    <version>2.1.0</version>
   </dependency>

scala IDE for eclipse 中创建scala Maven项目的方式如下:
在Eclispe 中点击” File->new->other”,如下图
这里写图片描述
输入Maven可以看到Maven Project:

这里写图片描述
直接next,得到
这里写图片描述
再点击next,在filter中输入scala得到:
这里写图片描述
选中,然后next输入相应的groupId等,直接finish即可。创建完项目将上述依赖添加到pom.xml文件当中,这样就完成了scala maven Project的创建。

2. Scala JDBC方式访问MySQL

下面给出的是scala采用JDBC访问MySQL的代码示例

package cn.scala.xtwy.jdbc

import java.sql.{ Connection, DriverManager }
object ScalaJdbcConnectSelect extends App {
  // 访问本地MySQL服务器,通过3306端口访问mysql数据库
  val url = "jdbc:mysql://localhost:3306/mysql"
  //驱动名称
  val driver = "com.mysql.jdbc.Driver"
  //用户名
  val username = "root"
  //密码
  val password = "123"
  //初始化数据连接
  var connection: Connection = _
  try {
   //注册Driver
    Class.forName(driver)
    //得到连接
    connection = DriverManager.getConnection(url, username, password)
    val statement = connection.createStatement
    //执行查询语句,并返回结果
    val rs = statement.executeQuery("SELECT host, user FROM user")
    //打印返回结果
    while (rs.next) {
      val host = rs.getString("host")
      val user = rs.getString("user")
      println("host = %s, user = %s".format(host, user))
    }
  } catch {
    case e: Exception => e.printStackTrace
  }
  //关闭连接,释放资源
  connection.close
}

3. Slick简介

在前一小节中我们演示了如何通过JDBC进行数据库访问,同样在Scala中也可以利用JAVA中的ORM框架如Hibernate、IBatis等进行数据库的操纵,但它们都是Java风格的数据库操纵方式,Scala语言中也有着自己的ORM框架,目前比较流行的框架包括:

1、Slick (typesafe公司开发)

2、Squeryl

3、Anorm

4、ScalaActiveRecord (基于Squeryl之上)

5、circumflex-orm

6、activate-framework(Scala版的Hibernate)

本节课程要讲的便是Slick框架,它是Scala语言创建者所成立的公司TypeSafe所开发的一个Scala风格的开源数据库操纵框架,它目前支持下面几种主流的数据:

DB2 (via slick-extensions)
Derby/JavaDB
H2
HSQLDB/HyperSQL
Microsoft Access
Microsoft SQL Server (via slick-extensions)
MySQL
Oracle (via slick-extensions)
PostgreSQL
SQLite

当然它也支持其它数据,只不过功能可能还不完善。在Slick中,可以像访问Scala自身的集合一样对数据库进行操作,它具有如下几个特点:

1 数据库的访问采用Scala风格:

//下面给出的是数据查询操作
class Coffees(tag: Tag) extends Table[(String, Double)](tag, "COFFEES") {
  def name = column[String]("COF_NAME", O.PrimaryKey)
  def price = column[Double]("PRICE")
  def * = (name, price)
}
val coffees = TableQuery[Coffees]

//下面给出的数据访问API
// Query that only returns the "name" column
coffees.map(_.name)

// Query that does a "where price < 10.0"
coffees.filter(_.price < 10.0)

从上面的代码可以看到,Slick访问数据库就跟Scala操纵自身的集合一样.

2 Slick数据操纵是类型安全的

// The result of "select PRICE from COFFEES" is a Seq of Double
// because of the type safe column definitions
val coffeeNames: Seq[Double] = coffees.map(_.price).list

// Query builders are type safe:
coffees.filter(_.price < 10.0)
// Using a string in the filter would result in a compilation error

3 支持链式操作

// Create a query for coffee names with a price less than 10, sorted by name
coffees.filter(_.price < 10.0).sortBy(_.name).map(_.name)
// The generated SQL is equivalent to:
// select name from COFFEES where PRICE < 10.0 order by NAME

4. Slick 数据库编程实战

下面的代码演示了Slick如何创建数据库表、如何进行数据插入操作及如何进行数据的查询操作(以MySQL为例):

package cn.scala.xtwy

//导入MySQL相关方法
import scala.slick.driver.MySQLDriver.simple._

object UseInvoker extends App {

  // 定义一个Test表
  //表中包含两列,分别是id,name
  class Test(tag: Tag) extends Table[(Int, String)](tag, "Test") {
    def k = column[Int]("id", O.PrimaryKey)
    def v = column[String]("name")
     // Every table needs a * projection with the same type as the table's type parameter
     //每个Table中都应该有*方法,它的类型必须与前面定义的类型参数(Int, String)一致
    def * = (k, v)
  }
  //创建TableQuery对象(这里调用的是TableQuery的apply方法
  //没有显式地调用new 
  val ts = TableQuery[Test]

  //forURL注册MySQL驱动器,传入URL,用户名及密码
  //方法回返的是一个DatabaseDef对象,然后再调用withSession方法
  Database.forURL("jdbc:mysql://localhost:3306/slick", "root","123",
      driver = "com.mysql.jdbc.Driver") withSession { 

    //定义一个隐式值
    //implicit session: MySQLDriverbackend.Session
    //后续方法中当做隐式参数传递
    implicit session =>

    // 创建Test表
    //create方法中带有一个隐式参数
    //def create(implicit session: JdbcBackend.SessionDef): Unit
    ts.ddl.create
    //插入数据
    //def insertAll(values: U*)(implicit session: JdbcBackend.SessionDef): MultiInsertResult
    ts.insertAll(1 -> "a", 2 -> "b", 3 -> "c", 4 -> "d", 5 -> "e")
   //数据库查询(这里返回所有数据)
   ts.foreach { x => println("k="+x._1+" v="+x._2) }

   //这里查询返回所有主鍵 <3的
   ts.filter { _.k <3 }.foreach { x => println("k="+x._1+" v="+x._2) }
  }
  //模式匹配方式
  ts.foreach { case(id,name) => println("id="+id+" name="+name) }
}

下面我们再给一个更为复杂的例子来演示Slick中是如何进行数据的入库与查询操作的:

package cn.scala.xtwy

import scala.slick.driver.MySQLDriver.simple._

object CoffeeExample extends App {
  // Definition of the SUPPLIERS table
  //定义Suppliers表
  class Suppliers(tag: Tag) extends Table[(Int, String, String, String, String, String)](tag, "SUPPLIERS") {
    def id = column[Int]("SUP_ID", O.PrimaryKey) // This is the primary key column
    def name = column[String]("SUP_NAME")
    def street = column[String]("STREET")
    def city = column[String]("CITY")
    def state = column[String]("STATE")
    def zip = column[String]("ZIP")
    // Every table needs a * projection with the same type as the table's type parameter
    def * = (id, name, street, city, state, zip)
  }
  val suppliers = TableQuery[Suppliers]

  // Definition of the COFFEES table
   //定义Coffees表
  class Coffees(tag: Tag) extends Table[(String, Int, Double, Int, Int)](tag, "COFFEES") {
    def name = column[String]("COF_NAME", O.PrimaryKey)
    def supID = column[Int]("SUP_ID")
    def price = column[Double]("PRICE")
    def sales = column[Int]("SALES")
    def total = column[Int]("TOTAL")
    def * = (name, supID, price, sales, total)
    // A reified foreign key relation that 
    //can be navigated to create a join
    //外鍵定义,它使得supID域中的值关联到suppliers中的id
    //从而保证表中数据的正确性
    //它定义的其实是一个n:1的关系,
    //即一个Coffees对应只有一个Suppliers,
    //而一个Suppliers可以对应多个Coffees
    def supplier = foreignKey("SUP_FK", supID, suppliers)(_.id)
  }
  val coffees = TableQuery[Coffees]

  Database.forURL("jdbc:mysql://localhost:3306/slick", "root", "123",
    driver = "com.mysql.jdbc.Driver") withSession {

      implicit session =>
        // Create the tables, including primary and foreign keys
        //按顺序创建表
        (suppliers.ddl ++ coffees.ddl).create

        // Insert some suppliers
        //插入操作,集合的方式
        suppliers += (101, "Acme, Inc.", "99 Market Street", "Groundsville", "CA", "95199")
        suppliers += (49, "Superior Coffee", "1 Party Place", "Mendocino", "CA", "95460")
        suppliers += (150, "The High Ground", "100 Coffee Lane", "Meadows", "CA", "93966")

        // Insert some coffees (using JDBC's batch insert feature, if supported by the DB)
        //批量插入操作,集合方式
        coffees ++= Seq(
          ("Colombian", 101, 7.99, 0, 0),
          ("French_Roast", 49, 8.99, 0, 0),
          ("Espresso", 150, 9.99, 0, 0),
          ("Colombian_Decaf", 101, 8.99, 0, 0),
          ("French_Roast_Decaf", 49, 9.99, 0, 0))
       //返回表中所有数据,相当于SELECT * FROM COFFEES
       coffees foreach {
          case (name, supID, price, sales, total) =>
            println("  " + name + "\t" + supID + "\t" + price + "\t" + sales + "\t" + total)

        }
       //返回表中所有数据,只不过这次是直接让数据库帮我们进行转换
        val q1 = for (c <- coffees)
          yield LiteralColumn("  ") ++ c.name ++ "\t" ++ c.supID.asColumnOf[String] ++
          "\t" ++ c.price.asColumnOf[String] ++ "\t" ++ c.sales.asColumnOf[String] ++
          "\t" ++ c.total.asColumnOf[String]
        // The first string constant needs to be lifted manually to a LiteralColumn
        // so that the proper ++ operator is found
        q1 foreach println

        //联合查询
        //采用===进行比较操作,而非==操作符,用于进行值比较
        //同样的还有!=值不等比较符
        //甚至其它比较操作符与scala是一致的 <, <=, >=, >
         val q2 = for {
          c <- coffees if c.price < 9.0
          s <- suppliers if s.id === c.supID
        } yield (c.name, s.name)

}

5. SQL与Slick相互转换

package cn.scala.xtwy

import scala.slick.driver.MySQLDriver.simple._
import scala.slick.jdbc.StaticQuery.interpolation
import scala.slick.jdbc.GetResult

object SQLAndSlick extends App {
  type Person = (Int, String, Int, Int)
  class People(tag: Tag) extends Table[Person](tag, "PERSON") {
    def id = column[Int]("ID", O.PrimaryKey)
    def name = column[String]("NAME")
    def age = column[Int]("AGE")
    def addressId = column[Int]("ADDRESS_ID")
    def * = (id, name, age, addressId)
    def address = foreignKey("ADDRESS", addressId, addresses)(_.id)
  }
  lazy val people = TableQuery[People]

  type Address = (Int, String, String)
  class Addresses(tag: Tag) extends Table[Address](tag, "ADDRESS") {
    def id = column[Int]("ID", O.PrimaryKey)
    def street = column[String]("STREET")
    def city = column[String]("CITY")
    def * = (id, street, city)
  }

  lazy val addresses = TableQuery[Addresses]

  val dbUrl = "jdbc:mysql://localhost:3306/slick"
  val jdbcDriver = "com.mysql.jdbc.Driver"
  val user = "root"
  val password = "123"
  val db = Database.forURL(dbUrl, user, password, driver = jdbcDriver)

  db.withSession { implicit session =>

    (people.ddl ++ addresses.ddl).create

    //插入address数据
    addresses += (23, "文一西路", "浙江省杭州市")
    addresses += (41, "紫荆花路", "浙江省杭州市")

    //插入people数据
    people += (1, "摇摆少年梦", 27, 23)
    people += (2, "john", 28, 41)
    people += (3, "stephen", 28, 23)

    //下面两条语句是等同的(获取固定几个字段)
    val query = sql"select ID, NAME, AGE from PERSON".as[(Int, String, Int)]
    query.list.foreach(x => println("id=" + x._1 + " name=" + x._2 + " age=" + x._3))

    val query2 = people.map(p => (p.id, p.name, p.age))
    query2.list.foreach(x => println("id=" + x._1 + " name=" + x._2 + " age=" + x._3))

    //下面两条语句是等同的(Where语句)
    val query3 = sql"select * from PERSON where AGE >= 18 AND NAME = '摇摆少年梦'".as[Person]
    query3.list.foreach(x => println("id=" + x._1 + " name=" + x._2 + " age=" + x._3))

    val query4 = people.filter(p => p.age >= 18 && p.name === "摇摆少年梦")
    query4.list.foreach(x => println("id=" + x._1 + " name=" + x._2 + " age=" + x._3))

    //orderBy
    sql"select * from PERSON order by AGE asc, NAME".as[Person].list
    people.sortBy(p => (p.age.asc, p.name)).list

    //max
    sql"select max(AGE) from PERSON".as[Option[Int]].first
    people.map(_.age).max

    //隐式join
    sql"""
  select P.NAME, A.CITY
  from PERSON P, ADDRESS A
  where P.ADDRESS_ID = a.id
""".as[(String, String)].list

    people.flatMap(p =>
      addresses.filter(a => p.addressId === a.id)
        .map(a => (p.name, a.city))).run

    // or equivalent for-expression:
    (for (
      p <- people;
      a <- addresses if p.addressId === a.id
    ) yield (p.name, a.city)).run

    //join操作
    sql"""select P.NAME, A.CITY from PERSON P join ADDRESS A on P.ADDRESS_ID = a.id """.as[(String, String)].list
    (people join addresses on (_.addressId === _.id))
  .map{ case (p, a) => (p.name, a.city) }.run
  }

}

上面列出的只是Slick与SQL的部分转换,还有诸如:Update、Delete等操作可以参见:http://slick.typesafe.com/doc/2.1.0/sql-to-slick.html

添加公众微信号,可以了解更多最新Spark、Scala相关技术资讯
这里写图片描述

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
2月前
|
Java 数据库连接 测试技术
SpringBoot入门 - 添加内存数据库H2
SpringBoot入门 - 添加内存数据库H2
97 3
SpringBoot入门 - 添加内存数据库H2
|
2月前
|
Java 数据库连接 测试技术
SpringBoot入门(4) - 添加内存数据库H2
SpringBoot入门(4) - 添加内存数据库H2
57 4
SpringBoot入门(4) - 添加内存数据库H2
|
5月前
|
存储 SQL 分布式数据库
OceanBase 入门:分布式数据库的基础概念
【8月更文第31天】在当今的大数据时代,随着业务规模的不断扩大,传统的单机数据库已经难以满足高并发、大数据量的应用需求。分布式数据库应运而生,成为解决这一问题的有效方案之一。本文将介绍一款由阿里巴巴集团自主研发的分布式数据库——OceanBase,并通过一些基础概念和实际代码示例来帮助读者理解其工作原理。
462 0
|
13天前
|
SQL Java 数据库连接
JDBC编程安装———通过代码操控数据库
本文,教你从0开始学习JBCD,包括驱动包的下载安装调试设置,以及java是如何通过JBDC实现对数据库的操作,以及代码的分析,超级详细
|
3月前
|
Java 数据库连接 测试技术
SpringBoot入门(4) - 添加内存数据库H2
SpringBoot入门(4) - 添加内存数据库H2
40 2
SpringBoot入门(4) - 添加内存数据库H2
|
2月前
|
数据库连接 Go 数据库
Go语言中的错误注入与防御编程。错误注入通过模拟网络故障、数据库错误等,测试系统稳定性
本文探讨了Go语言中的错误注入与防御编程。错误注入通过模拟网络故障、数据库错误等,测试系统稳定性;防御编程则强调在编码时考虑各种错误情况,确保程序健壮性。文章详细介绍了这两种技术在Go语言中的实现方法及其重要性,旨在提升软件质量和可靠性。
41 1
|
2月前
|
Java 数据库连接 测试技术
SpringBoot入门(4) - 添加内存数据库H2
SpringBoot入门(4) - 添加内存数据库H2
73 13
|
2月前
|
Java 数据库连接 测试技术
SpringBoot入门(4) - 添加内存数据库H2
SpringBoot入门(4) - 添加内存数据库H2
59 4
|
3月前
|
存储 人工智能 Java
Neo4j从入门到精通:打造高效知识图谱数据库 | AI应用开发
在大数据和人工智能时代,知识图谱作为一种高效的数据表示和查询方式,逐渐受到广泛关注。本文从入门到精通,详细介绍知识图谱及其存储工具Neo4j,涵盖知识图谱的介绍、Neo4j的特点、安装步骤、使用方法(创建、查询)及Cypher查询语言的详细讲解。通过本文,读者将全面了解如何利用Neo4j处理复杂关系数据。【10月更文挑战第14天】
233 6
|
3月前
|
SQL 存储 数据管理
SQL数据库的使用指南:从入门到精通
随着信息技术的飞速发展,数据库已成为各类企业和组织不可或缺的一部分。作为最流行的数据库管理系统之一,SQL数据库广泛应用于各种场景,如数据存储、数据管理、数据分析等。本文将详细介绍SQL数据库的使用方法,帮助初学者快速入门,并帮助有经验的开发者深化理解。一、SQL数据库基础首先,我们需要理解SQL数
171 2