复杂性思维中文第二版 十一、进化

简介: 十一、进化 原文:Chapter 11 Evolution 译者:飞龙 协议:CC BY-NC-SA 4.0 自豪地采用谷歌翻译生物学乃至整个科学最重要的思想,是通过自然选择的进化论,它声称由于自然选择而创造出新的物种并改变现有的物种。

十一、进化

原文:Chapter 11 Evolution

译者:飞龙

协议:CC BY-NC-SA 4.0

自豪地采用谷歌翻译

生物学乃至整个科学最重要的思想,是通过自然选择的进化论,它声称由于自然选择而创造出新的物种并改变现有的物种。自然选择是个体间遗传差异导致生存和繁殖差异的过程。

在了解生物学的人中,进化论被广泛认为是一个事实,也就是它足以接近事实,如果将来得到纠正,纠正将使中心思想基本保持完整。

尽管如此,许多人并不相信进化论。在皮尤研究中心进行的一项调查中,被调查者被问到,以下哪些断言更贴近他们的观点:

  • 人类和其他生物随时间而进化。
  • 起初,人类和其他生物就以其现在的形式存在。

即使在那些认为生物已经进化的人中,只有一半以上的人认为进化的原因是自然选择。 换句话说,只有三分之一的美国人相信进化论是真实的。

这怎么可能? 在我看来,促成因素包括:

  • 有些人认为进化论与他们的宗教信仰之间有冲突。 感觉就像他们不得不拒绝一个,他们拒绝了进化论。
  • 其他人经常被第一组成员积极误导,以至于他们对进化论的许多认识都是错误的。
  • 许多人根本就不了解进化。

对于第一组,我可能没有太多可以做的事,但我认为我可以帮助其他人。 经验上,进化论很难让人理解。 同时,它非常简单:对很多人来说,一旦他们了解进化论,它似乎既明显又无可辩驳。

为了帮助人们从困惑转变为清晰,我找到的最强大的工具就是计算。 我们看到,理论上很难理解的想法,在模拟中出现时很容易理解。 这是本章的目标。

本章的代码位于chap11.ipynb中,该书是本书仓库中的 Jupyter 笔记本。使用此代码的更多信息,请参见第?节。

11.1 简单的进化

我将从一个简单的模型开始,演示一种基本的进化形式。 根据该理论,以下特征足以产生进化:

  • 复制者:我们需要一批能够以某种方式复制的智能体。 我们将以复制者开始,它们生成它们自己的完美的副本。 稍后我们将添加不完美的副本,即突变。
  • 突变:我们还需要一些种群中的变化,也就是个体之间的差异。
  • 生存和繁殖差异:个体之间的差异必须影响其生存或繁殖的能力。

为了模拟这些特征,我们将定义智能体种群,智能体代表个体。 每个智能体都有遗传信息,称为基因型,这是智能体繁殖时复制的信息。 在我们的模型中 [1],基因型由N个二进制数字(零和一)的序列表示,其中N是我们选择的参数。

[1] 模型是主要由 Stuart Kauffman 开发的 NK 模型的变体(参见 https://en.wikipedia.org/wiki/NK_model)。

为了产生突变,我们创建了具有多种基因型的种群;稍后我们将探讨创造或增加突变的机制。

最后,为了产生生存和繁殖差异,我们定义了一个函数,将每个基因型映射为一个适应度,其中适应度是一个数量,有关智能体的生存或繁殖能力。

11.2 适应性景观

将基因型映射为适应性函数,称为适应性景观。 在景观的隐喻中,每个基因型对应于N维空间中的一个位置,并且适应性对应于该位置处的景观的“高度”。对于能够解释这个隐喻的可视化,参见 https://en.wikipedia.org/wiki/Fitness_landscape

在生物学术语中,适应性景观代表一种信息,它是生物体的基因型与其物理形式和能力的关系,后者称为其表现型,以及表现型如何与其环境相互作用。

在现实世界中,适应性景观很复杂,但我们不需要建立现实模型。 为了诱导进化,我们需要基因型和适应性之间的某种关系,但事实证明它可以是任何关系。 为了证明它,我们将使用完全随机的适应性景观。

这是代表适应性景观的类的定义:

class FitnessLandscape:
    def __init__(self, N):
        self.N = N
        self.one_values = np.random.random(N)
        self.zero_values = np.random.random(N)

    def fitness(self, loc):
        fs = np.where(loc, self.one_values,
                           self.zero_values)
        return fs.mean()

智能体的基因型,对应其在适应性景观中的位置,由一个 NumPy 的零一数组来表示,称为loc。 给定基因型的适应性,是N个适应性贡献的平均值,loc的每个元素都是一个。

为了计算基因型的适应性,FitnessLandscape使用两个数组:one_values,其中包含loc的每个元素都为 1 时的适应性贡献,以及zero_values,其中包含为 0 时的适应度贡献。

fitness方法使用np.where,如果loc中的值为 1,它从one_values中选择一个值,如果loc中的值为 0,它从zero_values中选择一个值。

例如,假设N=3

one_values =  [0.1, 0.2, 0.3]
zero_values = [0.4, 0.7, 0.9]

这种情况下,loc = [0, 1, 0]的适应性是[0.4, 0.2, 0.9]的均值,为 0.5。

11.3 智能体

接下来我们需要智能体,这是类定义:

class Agent:

    def __init__(self, loc, fit_land):
        self.loc = loc
        self.fit_land = fit_land
        self.fitness = fit_land.fitness(self.loc)

    def copy(self):
        return Agent(self.loc, self.fit_land)

智能体的属性是:

loc:智能体在适应性景观中的位置。
fit_landFitnessLandscape对象的引用。
fitness:智能体在FitnessLandscape中的适应性,表示为 0 到 1 之间的数字。
Agent的这个定义提供了一种简单的copy方法,可以精确复制基因型;之后,我们将看到一个带有突变的版本,但突变对于进化来说不是必需的。

11.4 模拟

现在我们有了智能体和适应性景观,我将定义一个名为Simulation的类,用于模拟智能体的创建,繁殖和死亡。 为了避免陷入困境,我将在这里提供一个简化版本的代码;你可以在本章的笔记本上看到细节。

这是Simulation的定义:


class Simulation:

    def __init__(self, fit_land, agents):
        self.fit_land = fit_land
        self.agents = agents

Simulation的属性是:

  • fit_landFitnessLandscape对象的引用。
  • agentsAgent对象的数组。

Simulation中最重要的函数是step,它模拟了单个时间步骤:


# class Simulation:

    def step(self):
        n = len(self.agents)
        fits = self.get_fitnesses()

        # see who dies
        index_dead = self.choose_dead(fits)
        num_dead = len(index_dead)

        # replace the dead with copies of the living
        replacements = self.choose_replacements(num_dead, fits)
        self.agents[index_dead] = replacements

在每个时间步骤中,一些智能体死亡,一些智能体繁殖。 step使用另外三个方法:

  • get_fitnesses返回一个数组,包含每个智能体的适应性,按照它们在智能体数组中出现的顺序。
  • choose_dead决定哪些智能体在此时间步中死亡,并返回一个数组,包含死亡智能体的索引。
  • choose_replacements决定哪些智能体在此时间步中繁殖,在每个智能体上调用copy,并返回一个新的Agent对象的数组。

在这个版本的模拟中,每个时间步中新智能体的数量等于死亡智能体的数量,所以活动智能体的数量是恒定的。

11.5 没有差异

在我们运行模拟之前,我们必须指定choose_deadchoose_replacements的行为。 我们将从这些函数的简单版本开始,它们不依赖于适应性:

# class Simulation

     def choose_dead(self, fits):
        n = len(self.agents)
        is_dead = np.random.random(n) < 0.1
        index_dead = np.nonzero(is_dead)[0]
        return index_dead

    def choose_replacements(self, n, fits):
        agents = np.random.choice(self.agents, size=n, replace=True)
        replacements = [agent.copy() for agent in agents]
        return replacements

choose_dead中,n是智能体的数量,is_dead是一个布尔数组,对于此时间步骤内死亡的智能体为True。 在这个版本中,每个智能体都有相同的死亡概率:0.1。 choose_dead使用np.nonzero来查找is_dead的非零元素的索引(True被视为非零)。

choose_replacements中,n是在此时间步骤中复制的智能体数量。 它使用np.random.choice带替换地选择n个智能体。 然后它在每个上调用copy,并返回一个新的Agent对象列表。

这些方法不依赖于适应性,所以这种模拟没有生存或繁殖差异。 因此,我们不应期待看到进化。 但是,我们怎么辨别呢?

11.6 进化的证据

进化的最具包容性的定义是,种群中基因型分布的变化。 进化是一种聚合效应:换句话说,个体不会进化;但种群会。

在这个模拟中,基因型是高维空间中的位置,因此很难将其分布中的变化可视化。 但是,如果基因型改变,我们预计它们的适应性也会改变。 所以我们将将适应性分布的变化用作进化的证据。 具体来说,我们将看看种群中适应性的均值和标准差。

在我们运行模拟之前,我们必须添加一个Instrument,它是在每个时间步骤后更新的对象,计算一个感兴趣的统计量,并将结果存储在一个序列中,我们稍后可以绘制它。

这是所有仪器的父类:

class Instrument:
    def __init__(self):
        self.metrics = []

下面是MeanFitness的定义,MeanFitness是一个仪器,计算每个时间步的种群平均适应性:


class MeanFitness(Instrument):
    def update(self, sim):
        mean = np.nanmean(sim.get_fitnesses())
        self.metrics.append(mean)

现在我们准备好运行模拟了。 为了最小化起始种群中随机变化的影响,我们使用同一组智能体启动每个模拟。 为了确保我们探索整个适应性景观,我们由每个位置的一个智能体开始。 以下是创建模拟的代码:

N = 8
fit_land = FitnessLandscape(N)
agents = make_all_agents(fit_land, Agent)
sim = Simulation(fit_land, agents)

make_all_agents为每个位置创建一个智能体; 本章的实现在笔记本中。

现在我们可以创建并添加MeanFitness仪器,运行模拟并绘制结果:

instrument = MeanFitness()
sim.add_instrument(instrument)
sim.run()
sim.plot(0)

模拟维护了Instrument对象列表。 在每个时间步之后,它在列表中的每个仪器上调用update

模拟运行后,我们使用Simulation.plot绘制结果,它接受索引作为参数,使用索引从列表中选择一个Instrument并绘制结果。 在这个例子中,只有一个Instrument,索引为 0。

图 11.1:随着时间的推移,10 次模拟的平均适应性,没有生存或繁殖差异

图?显示了运行这个模拟 10 次的结果。 种群的平均适应性随机移动。 由于适应性的分布随时间变化,我们推断表现型的分布也在变化。 按照最具包容性的定义,这种随机游走是一种进化。 但它不是一个特别有趣的类型。

特别是,这种进化并不能解释生物物种如何随时间变化,或者如何出现新的物种。 进化论是强大的,因为它解释了我们在自然界看到的似乎无法解释的现象:

  • 适应性:物种与其环境的相互作用似乎太复杂,太巧妙,并且偶然发生。 自然系统的许多特征看起来好像是设计出来的。
  • 增加的多样性:地球上的物种数量随时间而普遍增加(尽管有几个时期的大规模灭绝)。
  • 增加的复杂性:地球上的生命史起始于相对简单的生命形式,后来在地质记录中出现了更复杂的生物体。

这些是我们想要解释的现象。 到目前为止,我们的模型并没有完成这个任务。

11.7 生存差异

让我们再添加一种成分,生存差异。 以下是继承Simulation并覆盖choose_dead的类的定义:


class SimWithDiffSurvival(Simulation):

    def choose_dead(self, fits):
        n = len(self.agents)
        is_dead = np.random.random(n) > fits
        index_dead = np.nonzero(is_dead)[0]
        return index_dead

现在生存的概率取决于适应性;事实上,在这个版本中,智能体在每个时间步骤中幸存的概率是其适应性。

由于适应性低的智能体更有可能死亡,因此适应性高的智能体更有可能生存足够长的时间来繁殖。 我们预计适应性低的智能体的数量会随时间而减少,适应性高的智能体的数量会增加。

图 11.2:随着时间的推移,10 次模拟中的适应性均值,带有生存差异

图?显示了随着时间的推移,10 次模拟中的适应性均值,带有生存差异。 平均适应性起初会迅速增加,但会逐渐平稳。

你或许可以弄清楚为什么它会平稳:如果在特定位置只有一个智能体并且它死了,它就会使这个位置变空。没有突变,就没有办法让它再次被占领。

N = 8的情况下,该模拟以 256 个智能体开始,它们占用了所有可能位置。 占用位置的数量随时间而减少;如果模拟运行时间足够长,最终所有智能体将占用相同的位置。

所以这个模拟开始解释适应性:增加的适应性意味着,物种在它的环境中生存得更好。 但是占用位置的数量随时间而减少,所以这个模型根本无法解释增加的多样性。

在本章的笔记本中,你将看到差异化繁殖的效果。 正如你所预料的那样,差异化繁殖也会增加平均适应性。但没有突变,我们仍然没有看到增加的多样性。

11.8 突变

在目前的模拟中,我们以可能的最大多样性开始 - 在景观的每个位置都有一个智能体 - 并以可能的最小多样性结束,所有智能体都在一个位置。

这与自然界发生的情况几乎相反,它显然以单个物种开始,这种物种随时间而分化为今天的地球上数百万甚至数十亿物种(见 https://en.wikipedia.org/wiki/Global_biodiversity)。

使用我们模型的完美复制,我们从未看到增加的多样性。 但是如果我们加上突变,再加上生存和繁殖差异,我们距离理解自然界的进化就更近了一步。

以下是继承Agent并覆盖copy的类定义:

class Mutant(Agent):

    prob_mutate = 0.05

    def copy(self):
        if np.random.random() > self.prob_mutate:
            loc = self.loc.copy()
        else:
            direction = np.random.randint(self.fit_land.N)
            loc = self.mutate(direction)
        return Mutant(loc, self.fit_land)

在这种突变模型中,每次我们调用copy时,都有 5% 的突变机会。 在突变的情况下,我们从当前位置选择一个随机方向 - 即基因型中的一个随机位 - 并翻转它。 这是mutate

    def mutate(self, direction):
        new_loc = self.loc.copy()
        new_loc[direction] ^= 1
        return new_loc

运算符^=计算“异或”;操作数 1 具有翻转一位的效果(请参阅 https://en.wikipedia.org/wiki/Exclusive_or#Bitwise_operation)。

现在我们有了突变,我们不必在每个位置都放置一个智能体。 相反,我们可以以最小变化开始:所有智能体在同一位置。

图 11.3:随着时间的推移,10 次模拟中的适应性均值,带有突变、生存繁殖差异

图?显示了 10 次模拟的结果,带有突变和生存繁殖差异。 在任何情况下,种群都会向最大适应性的位置进化。

图 11.4:随着时间的推移,10 次模拟的占用位置的数量,带有突变和生存繁殖差异。

为了测量种群的多样性,我们可以绘制每个时间步后占用位置的数量。 图?展示了结果。 我们以同一地点的 100 个智能体开始。 随着突变的发生,占用位置的数量迅速增加。

当智能体发现适应性高的位置时,它更有可能生存和繁殖。 适应性较低的位置上的智能体最终消失。 种群在整个景观中随时间而移动,直到大多数智能体处于适合性最高的位置。

此时,系统达到平衡,突变以相同的速率占据新的位置,生存差异导致适合性低的位置清空。

平衡中的占用位置的数量,取决于突变率和生存差异的程度。 在这些模拟中,任何点处的独特占用位置的数量通常为 10-20。

重要的是要记住,这个模型中的智能体不会移动,就像生物体的基因型没有改变一样。 当智能体死亡时,它可能会留下一个空位。 当发生突变时,它可以占据一个新的位置。 当智能体从某些地方消失并出现在其他地方时,种群会在景观中移动,就像生命游戏中的滑翔机一样。 但生命体不会进化;但种群可以。

11.9 物种形成

进化论说,自然选择改变了现有的物种并创造了新的物种。 在我们的模型中,我们看到了变化,但我们并没有看到新的物种。 在模型中,还不清楚新物种是什么样。

在有性繁殖的物种中,如果两种生物能够繁殖并产生丰富的后代,则被视为同一物种。 但是模型中的智能体不会再现性行为,所以这个定义不适用。

在无性繁殖的生物中,如细菌,物种的定义并不明确。 一般来说,如果一个种群的基因型形成一个簇,那么它就被认为是一个物种,也就是说,如果种群内的遗传差异比种群间的差异小。

在我们可以对新物种建模之前,我们需要能够识别景观中的智能体簇,这意味着我们需要定义位置之间的距离。 由于位置是用二进制数字串表示的,因此我们将距离定义为基因型中不同的位数。 FitnessLandscape提供了distance方法:

# class FitnessLandscape

    def distance(self, loc1, loc2):
        return np.sum(np.logical_xor(loc1, loc2))

图 11.5:智能体随时间变化的平均距离

logical_xor函数计算“异或”,不同的元素为True,相同的元素为False

为了量化种群的分散,我们可以计算每对智能体之间距离的平均值。 在本章的笔记本中,你会看到MeanDistance仪器,它会在每个时间步骤后计算这个度量。

图? 展示了智能体随时间的平均距离。 因为我们从相同的突变开始,所以初始距离为 0。随着突变的发生,平均距离增加,在种群遍布景观时达到最大值。

一旦智能体发现最佳位置,平均距离就会减小,直到种群达到平衡,由于突变引起的距离增加通过距离的减小而平衡,因为远离最佳位置的智能体更有可能死亡。 在这些模拟中,平衡时的平均距离接近 1.5;也就是说,大多数智能体距离最佳位置只有 1-2 个突变。

现在我们准备寻找新的物种。 为了模拟一种简单的物种形成,假设一个种群在不变的环境中演化,直到它达到稳定状态(就像我们在自然界发现的一些物种,似乎在很长一段时间内变化很小)。

现在假设我们改变环境,或者将种群转移到新的环境中。 一些旧环境中适应性较高的特性,可能会在新环境中适应性较低,反之亦然。

我们可以通过运行模拟来模拟这些情景,直到种群达到稳定状态,然后改变适应性景观,然后恢复模拟,直到种群再次达到稳定状态。

图 11.6:随时间变化的适应性均值。在 500 步之后,我们改变了适应性景观

图?展示了这样的模拟结果。 再次,我们从随机位置开始,使用 100 个相同的突变体,并运行 500 个时间步骤的模拟。 在这个时候,许多智能体处于最佳位置,在这个例子中,其适应性接近 0.65。 智能体的基因型形成一个簇,智能体之间的平均距离接近 1。

经过 500 步之后,我们运行FitnessLandscape.set_values,这改变了适应性景观; 然后我们恢复模拟。 平均适应性会立即下降,因为旧景观中的最佳位置并不比新景观中的随机位置好。

然而,当种群迁移到新景观时,平均适应性会迅速增加,最终会找到新的最佳值,其适应度接近 0.75(在这个例子中恰好更高,但不一定是)。

一旦种群达到稳定状态,它就会形成一个新的簇,智能体之间的平均距离再次接近 1。

现在,如果我们计算智能体之前和之后的位置之间的距离,平均而言,它们相差超过 6。 簇之间的距离远大于每个簇内的距离,因此我们可以将这些簇解释为不同的物种。

11.10 总结

我们已经看到,突变以及生存和繁殖差异,足以导致适应性的增加,多样性的增加,并产生简单形式的物种。 这种模型并不是现实的;自然系统中的进化要比这复杂得多。 相反,它意味着一个“充足定理”;也就是说,模型的特征足以产生我们试图解释的行为(参见 https://en.wikipedia.org/wiki/Necessity_and_sufficiency)。

从逻辑上讲,这个“定理”并不能证明,自然界中的进化仅仅由这些机制引起,但是由于这些机制确实以多种形式出现在生物系统中,所以认为它们至少有助于自然进化,是合理的。

同样,该模型并不能证明这些机制总是会导致进化。 但是我们在这里看到的结果是可靠的:在几乎所有包含这些特征的模型中 - 不完美的复制者,变异性和繁殖差异 - 发生了进化。

我希望这一观察有助于揭开进化的神秘面纱。 当我们观察自然系统时,进化看起来很复杂。 而且由于我们主要看到了进化的结果,而没有看到这个过程,所以难以想象和相信。

但在模拟中,我们看到整个过程,而不仅仅是结果。 通过包含最少的一系列特征来产生进化 - 暂时忽略了生物生命的巨大复杂性 - 我们可以将进化看作是一个令人惊讶的简单,不可避免的想法。

11.11 练习

本章的代码位于本书仓库的 Jupyter 笔记本chap11.ipynb中。 打开笔记本,阅读代码并运行单元格。 笔记本包含本章的练习。 我的解决方案在chap11soln.ipynb中。

相关文章
|
1月前
从代码到哲学:编程中的思维模型与生活智慧
【10月更文挑战第35天】在编程的世界里,代码是构建数字宇宙的基石。本文将通过浅显的语言和实际代码示例,探讨编程思维如何影响我们的日常生活决策,并揭示技术背后的哲学思考。我们将一起探索代码的逻辑结构如何映射到生活的选择中,以及如何通过编程提升问题解决的能力。
34 2
|
7月前
|
机器学习/深度学习 人工智能 vr&ar
从概念到现实:ChatGPT 和 Midjourney 的设计之旅
从概念到现实:ChatGPT 和 Midjourney 的设计之旅
183 0
|
算法 搜索推荐
认知算法(十一)
认知算法(十一),一起来学习吧。
|
决策智能
复杂性思维中文第二版 十二、合作进化
十二、合作进化 原文:Chapter 12 Evolution of cooperation 译者:飞龙 协议:CC BY-NC-SA 4.0 自豪地采用谷歌翻译 在最后一章中,我们提出两个问题,一个来自生物学,一个来自哲学: 在生物学中,“利他主义问题”是自然选择与利他主义之间的明显冲突,自然选择表明动物生存在不断竞争的状态中来生存和繁殖,利他主义是许多动物帮助其他动物的倾向,甚至是显然对他们不利。
1089 0
|
人工智能 算法 机器人
新数学框架“终极算法”理论提出,或让机器诞生意识
台湾中正大学的退休教授Daniel j.Buehrer,最近发表的一篇论文提出一种新的数学框架,如果他的理论是正确的,那么他的数学理论将会创造出一种无所不包的全学习算法。
1583 0
|
算法 搜索推荐 索引
复杂性思维中文第二版 附录 A、算法分析
附录 A、算法分析 原文:Appendix A Analysis of algorithms 译者:飞龙 协议:CC BY-NC-SA 4.0 自豪地采用谷歌翻译 部分参考了《Think Python 2e 中译本 第二十一章:算法分析》 算法分析 (Analysis of algorithms) 是计算机科学的一个分支, 着重研究算法的性能, 特别是它们的运行时间和资源开销。
1350 0
|
存储 Python
复杂性思维中文第二版 五、细胞自动机
五、细胞自动机 原文:Chapter 5 Cellular Automatons 译者:飞龙 协议:CC BY-NC-SA 4.0 自豪地采用谷歌翻译 细胞自动机(CA)是一个世界的模型,带有非常简单的物理。
1564 0
《认知设计:提升学习体验的艺术》——学习者应该达到何种学习程度
本节书摘来自华章社区《认知设计:提升学习体验的艺术》一书中的学习者应该达到何种学习程度,作者:(美)Julie Dirksen,更多章节内容可以访问云栖社区“华章社区”公众号查看
1050 0