美团在Redis上踩过的一些坑-5.redis cluster遇到的一些问题

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介:    转载请注明出处哈:http://carlosfu.iteye.com/blog/2254154      由于演讲时间有限,有关Redis-Cluster,演讲者没做太多介绍,简单的介绍了一些Redis-Cluster概念作用和遇到的两个问题,我们在Redis-Cluster也有很多运维经验,将来的文章会介绍。


   转载请注明出处哈:http://carlosfu.iteye.com/blog/2254154


    

由于演讲时间有限,有关Redis-Cluster,演讲者没做太多介绍,简单的介绍了一些Redis-Cluster概念作用和遇到的两个问题,我们在Redis-Cluster也有很多运维经验,将来的文章会介绍。

 

但是讲演者反复强调,不要听信网上对于Redis-Cluster的毁谤(实践出真知),对于这一点我很赞同,我们从Redis-Cluster beta版 RC1~4 到现在的3.0-release均没有遇到什么大问题(线上维护600个实例)。

 

一、Redis-Cluster

有关Redis-Cluster的详细介绍有很多这里就不多说了,可以参考:

1. redis-cluster研究和使用

2. Redis Cluster 3.0.5集群实践

3. 本博客的一些Redis-Cluster的介绍(未更新完毕)

4. Redis设计与实现那本书(作者:黄建宏):非常的推荐看这本书。

总之Redis-Cluster是一个无中心的分布式Redis存储架构,解决了Redis高可用、可扩展等问题。

 

 

 

 

二、两个问题:

 

1. Redis-Cluster主从节点不要在同一个机器部署

   (1) 以我们的经验看redis实例本身基本不会挂掉,通常是机器出了问题(断电、机器故障)、甚至是机架、机柜出了问题,造成Redis挂掉。

   (2) 如果Redis-Cluster的主从都在一个机器上,那么如果这台机器挂了,主从全部挂掉,高可用就无法实现。(如果full converage=true,也就意味着整个集群挂掉)

   (3) 通常来讲一对主从所在机器:不跨机房、要跨机架、可以在一个机柜。

 

2. Redis-Cluster误判节点fail进行切换

   (1) Redis-Cluster是无中心的架构,判断节点失败是通过仲裁的方式来进行(gossip和raft),也就是大部分节点认为一个节点挂掉了,就会做fail判定。

   (2) 如果某个节点在执行比较重的操作(flushall, slaveof等等)(可能短时间redis客户端连接会阻塞(redis单线程))或者由于网络原因,造成其他节点认为它挂掉了,会做fail判定。

   (3) Redis-Cluster提供了cluster-node-timeout这个参数(默认15秒),作为fail依据(如果超过15秒还是没反应,就认为是挂掉了),具体可以参考这篇文章:Redis-Cluster的FailOver失败案例分析

        以我们的经验看15秒完全够用。

   

 

三、未来要介绍的问题:

 

1. Redis-Cluster客户端实现Mget操作。

2. Redis-Cluster--Too many Cluster redirections异常

3. Redis-Cluster无底洞问题解析。

4. 两个Redis-Cluster集群,meet操作问题后的恶果。

5. Redis-Cluster配置之full converage问题。

6. Redis-Cluster故障转移测试

7. Redis-Cluster常用运维技巧。

8. Redis-Cluster一键开通。

9. Redis-Cluster客户端jedis详解。

 

四、附赠一些不错的资料:

  1.  Redis-Cluster的FailOver失败案例分析
  2.  Redis Cluster 迁移遇到的各种坑及解决方案
  3.  Redis Cluster架构优化
  4.  Redis常见集群方案、Codis实践及与Twemproxy比较
  5.  Redis Cluster架构优化
  6. 【运维实践】鱼与熊掌:使用redis-cluster需要注意些什么?
  7.  Docker及和Redis Cluster的化学反应(上)By 芒果TV
  8.  Docker及和Redis Cluster的化学反应(下)By 芒果TV
  9.  Redis cluster使用经验——网易有道
  10.  Redis Cluster浅析和Bada对比
  11.  互联网Redis应用场景探讨
  12.  Redis集群技术及Codis实践
  13.  谈Twitter的百TB级Redis缓存实践
  14.  Hadoop、Spark、HBase与Redis的适用性讨论
  15. Codis作者黄东旭细说分布式Redis架构设计和踩过的那些坑们

 

 

 

 

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
6月前
|
存储 运维 NoSQL
Redis Cluster集群模式部署
Redis Cluster集群模式部署
125 4
|
2月前
|
NoSQL Java API
美团面试:Redis锁如何续期?Redis锁超时,任务没完怎么办?
在40岁老架构师尼恩的读者交流群中,近期有小伙伴在面试一线互联网企业时遇到了关于Redis分布式锁过期及自动续期的问题。尼恩对此进行了系统化的梳理,介绍了两种核心解决方案:一是通过增加版本号实现乐观锁,二是利用watch dog自动续期机制。后者通过后台线程定期检查锁的状态并在必要时延长锁的过期时间,确保锁不会因超时而意外释放。尼恩还分享了详细的代码实现和原理分析,帮助读者深入理解并掌握这些技术点,以便在面试中自信应对相关问题。更多技术细节和面试准备资料可在尼恩的技术文章和《尼恩Java面试宝典》中获取。
美团面试:Redis锁如何续期?Redis锁超时,任务没完怎么办?
|
7月前
|
存储 监控 负载均衡
redis 集群 (主从复制 哨兵模式 cluster)
redis 集群 (主从复制 哨兵模式 cluster)
|
4月前
|
存储 NoSQL 算法
深入理解Redis分片Cluster原理
本文深入探讨了Redis Cluster的分片原理,作为Redis官方提供的高可用性和高性能解决方案,Redis Cluster通过数据分片和横向扩展能力,有效降低单个主节点的压力。
深入理解Redis分片Cluster原理
|
4月前
|
缓存 NoSQL 网络协议
【Azure Redis 缓存】Azure Redis Cluster 在增加分片数时失败分析
【Azure Redis 缓存】Azure Redis Cluster 在增加分片数时失败分析
|
4月前
|
缓存 NoSQL Redis
【Azure Redis 缓存】Windows版创建 Redis Cluster 实验 (精简版)
【Azure Redis 缓存】Windows版创建 Redis Cluster 实验 (精简版)
|
4月前
|
NoSQL Redis
Redis——单机迁移cluster集群如何快速迁移
Redis——单机迁移cluster集群如何快速迁移
142 0
|
7月前
|
存储 负载均衡 监控
redis 集群模式(redis cluster)介绍
redis 集群模式(redis cluster)介绍
|
7月前
|
存储 缓存 运维
软件体系结构 - 缓存技术(5)Redis Cluster
【4月更文挑战第20天】软件体系结构 - 缓存技术(5)Redis Cluster
184 10
|
7月前
|
运维 NoSQL 算法
Java开发-深入理解Redis Cluster的工作原理
综上所述,Redis Cluster通过数据分片、节点发现、主从复制、数据迁移、故障检测和客户端路由等机制,实现了一个分布式的、高可用的Redis解决方案。它允许数据分布在多个节点上,提供了自动故障转移和读写分离的功能,适用于需要大规模、高性能、高可用性的应用场景。
72 0