基于Java语言构建区块链(一)—— 基本原型

简介: 最终内容请以原文为准:https://wangwei.one/posts/df195d9.html 引言 区块链技术是一项比人工智能更具革命性的技术,人工智能只是提高了人类的生产力,而区块链则将改变人类社会的生产关系,它将会颠覆我们人类社会现有的协作方式。

最终内容请以原文为准:https://wangwei.one/posts/df195d9.html

引言

区块链技术是一项比人工智能更具革命性的技术,人工智能只是提高了人类的生产力,而区块链则将改变人类社会的生产关系,它将会颠覆我们人类社会现有的协作方式。了解和掌握区块链相关知识和技术,是我们每位开发人员必须要去做的事情,这样我们才能把握住这波时代趋势的红利。

本文将基于Java语言构建简化版的blockchain,来实现数字货币。

创建区块

区块链是由包含交易信息的区块从后向前有序链接起来的数据结构。区块被从后向前有序地链接在这个链条里,每个区块都指向前一个区块。以比特币为例,每个区块主要包含如下信息字段:

  • 区块大小:用字节表示的区块数据大小
  • 区块头:组成区块头的几个字段

    • 区块头hash值
    • 父区块头hash值
    • 时间戳:区块产生的近似时间
    • Merkle根:该区块中交易的merkle树根的哈希值
    • 难度目标:该区块工作量证明算法的难度目标
    • Nonce:用于工作量证明算法的计数器
  • 交易计数器:交易的数量
  • 交易:记录在区块里的交易信息

详见:《精通比特币》(第二版)第9章——区块链

区块数据结构

在这里,我们主要是为了实现最简单的区块链结构,仅仅包含以下几个信息字段:

/**
 * 区块
 *
 * @author wangwei
 * @date 2018/02/02
 */
@Data
public class Block {

    /**
     * 区块hash值
     */
    private String hash;
    /**
     * 前一个区块的hash值
     */
    private String previousHash;
    /**
     * 区块数据
     */
    private String data;
    /**
     * 区块创建时间(单位:秒)
     */
    private long timeStamp;

    public Block() {
    }

    public Block(String hash, String previousHash, String data, long timeStamp) {
        this();
        this.hash = hash;
        this.previousHash = previousHash;
        this.data = data;
        this.timeStamp = timeStamp;
    }
}
区块Hash值计算

加密Hash值,一个通过SHA256算法对区块头进行二次哈希计算而得到的数字指纹。Hash值用于确保blockchain的安全。Hash计算是计算敏感的操作,即使在高性能电脑也需要花费一段时间来完成计算(这也就是为什么人们购买高性能GPU进行比特币挖矿的原因)。blockchain架构设计有意使Hash计算变得困难,这样做是为了加大新增一个block的难度,进而防止block在增加后被随意修改。

/**
 * <p> 创建新区块 </p>
 *
 * @param previousHash
 * @param data
 * @return
 */
public static Block newBlock(String previousHash, String data) {
        Block block = new Block("", previousHash, data.getBytes(),     Instant.now().getEpochSecond());
        block.setHash();
        return block;
}

/**
 * 计算区块Hash
 * <p>
 * 注意:在准备区块数据时,一定要从原始数据类型转化为byte[],不能直接从字符串进行转换
 *
 * @return
 */
private void setHash() {
    byte[] prevBlockHashBytes = {};
    if (StringUtils.isNoneBlank(this.getPrevBlockHash())) {
        prevBlockHashBytes = new BigInteger(this.getPrevBlockHash(), 16).toByteArray();
    }

    byte[] headers = ByteUtils.merge(
           prevBlockHashBytes,
           this.getData().getBytes(),
           ByteUtils.toBytes(this.getTimeStamp()));

    this.setHash(DigestUtils.sha256Hex(headers));
}

创建区块链

区块链本质上是一种有序反向链接链表的数据结构。这意味着,block按照插入的顺序存放,同时每个block都保存指向上一个block的链接。这种结构保证可以快速获取最新插入的block同时获取它的hash值。这种结构保证可以快速获取最新插入的block同时(高效地)获取它的hash值。

区块链数据结构
/**
 * <p> 区块链 </p>
 *
 * @author wangwei
 * @date 2018/02/02
 */
public class Blockchain {
    
    @Getter
    private List<Block> blockList;

    public Blockchain(List<Block> blockList) {
        this.blockList = blockList;
    }
}    
添加区块

新增一个添加区块链的方法

/**
 * <p> 添加区块  </p>
 *
 * @param data 数据
 */
public void addBlock(String data) {
   Block previousBlock = blockList.get(blockList.size() - 1);
   this.addBlock(Block.newBlock(previousBlock.getHash(), data));
}

/**
 * <p> 添加区块  </p>
 *
 * @param block 区块
 */
public void addBlock(Block block) {
   this.blockList.add(block);
}
创世区块

在添加区块之前,区块链必须有个创世区块,在Block中新增创世区块方法:

/**
  * <p> 创建创世区块 </p>
  *
  * @return
  */
public static Block newGenesisBlock() {
   return Block.newBlock("", "Genesis Block");
}
创建区块链

再在Blockchain中新增创建区块链的方法:

/**
 * <p> 创建区块链 </p>
 *
 * @return
 */
public static Blockchain newBlockchain() {
    List<Block> blocks = new LinkedList<>();
    blocks.add(Block.newGenesisBlock());
    return new Blockchain(blocks);
}

测试运行

/**
 * 测试
 *
 * @author wangwei
 * @date 2018/02/05
 */
public class BlockchainTest {

    public static void main(String[] args) {

        Blockchain blockchain = Blockchain.newBlockchain();
        blockchain.addBlock("Send 1 BTC to Ivan");
        blockchain.addBlock("Send 2 more BTC to Ivan");

        for (Block block : blockchain.getBlockList()) {
            System.out.println("Prev. hash: " + block.getPreviousHash());
            System.out.println("Data: " + block.getData());
            System.out.println("Hash: " + block.getHash());
            System.out.println();
        }
    }
}

/**
 * 输出如下信息:
 */
Prev. hash: 
Data: Genesis Block
Hash: 4492cb9d396a9a52e7ff17ef3782f022ddcdc7b2c276bc6dd3d448b0655eb3d4

Prev. hash: 4492cb9d396a9a52e7ff17ef3782f022ddcdc7b2c276bc6dd3d448b0655eb3d4
Data: Send 1 BTC to Ivan
Hash: cd716d59d98ad673035ab7035ece751718ea9842944a4743c298bebc0fe24c04

Prev. hash: cd716d59d98ad673035ab7035ece751718ea9842944a4743c298bebc0fe24c04
Data: Send 2 more BTC to Ivan
Hash: 42f78d6a86f88aa9b5b10e468494dfd1b3f558a9fb74a01eb348c2cbfc5d000a

总结

我们构建了一个非常简单的区块链原型:它只是一个块的数组,每个块都与前一个块有连接。 实际的区块链要复杂得多。

  • 缺少交易信息:我们的区块链还没有任何交易信息。
  • 缺少工作量证明:我们的生产区块非常简单快捷,实际的区块链中,生产一个区块需要进行大量的计算。
  • 缺少共识机制:区块链是一个非单一决策者的分布式数据库。 因此,一个新的区块必须得到网络的其他参与者的确认和批

在以后的文章中,我们将介绍这些功能。

资料

目录
相关文章
|
4月前
|
传感器 安全 物联网
新技术趋势与应用随着科技的不断进步,新兴技术如区块链、物联网和虚拟现实等正迅速改变我们的世界。这些技术不仅在各自领域内展现出强大的潜力,还在相互融合中催生出更多创新应用场景。本文将探讨这些新兴技术的发展趋势及其在各行业中的应用前景,通过通俗易懂的语言和清晰的条理,带领读者了解其内涵和意义。
本文旨在探讨区块链技术、物联网和虚拟现实等新兴技术的发展趋势及其在各个行业的应用场景。通过分析这些技术的独特优势和潜在缺陷,揭示它们对未来社会和经济可能带来的深远影响。同时,结合实际案例,展示这些技术如何解决现实问题,为各行各业提供新的发展机遇。
122 4
|
6月前
|
供应链 监控 安全
构建未来:区块链技术在供应链管理中的应用
【8月更文挑战第30天】 在数字化浪潮的推动下,供应链管理正经历着前所未有的转型。本文深入探讨了区块链技术如何成为这一变革的核心动力。通过分析区块链的不可篡改性、透明度以及去中心化特性,揭示了其在提高供应链效率、确保商品真实性和加强各方信任方面的潜力。不同于常规摘要,本文还将提供具体的行业案例,以展现区块链技术在实际供应链管理中的应用场景与成效。
|
7月前
|
算法 分布式数据库 区块链
Python构建区块链
【7月更文挑战第10天】本文探讨了如何使用Python构建基本的区块链应用。区块链作为去中心化的分布式数据库,由包含交易数据的区块组成,通过哈希链接形成不可篡改的链。文中通过Python代码展示了如何创建`Block`类和`Blockchain`类,实现了区块的创建、哈希计算和链的构建。此外,还讨论了如何扩展区块链,包括添加智能合约、实现共识算法如Proof of Work、优化网络层以及引入隐私保护和跨链技术。
113 6
|
6月前
|
供应链 区块链 数据安全/隐私保护
构建未来的桥梁:区块链技术在现代金融中的应用
【8月更文挑战第16天】区块链技术,这一去中心化的数字账本技术,正逐渐渗透到金融领域的每一个角落。从提高交易透明度、降低操作成本到促进金融包容性,区块链正在重塑金融行业的未来。本文将探讨区块链技术如何在现代金融中发挥作用,以及它如何为金融服务的未来发展铺平道路。
|
8月前
|
供应链 算法 Java
使用Java构建区块链应用
使用Java构建区块链应用
|
7月前
|
存储 安全 Java
基于Java的区块链数字身份认证系统设计与开发
基于Java的区块链数字身份认证系统设计与开发
|
7月前
|
Java API 区块链
如何在Java中实现智能合约与区块链集成
如何在Java中实现智能合约与区块链集成
|
7月前
|
存储 安全 Java
Java中的区块链数字身份认证系统安全设计
Java中的区块链数字身份认证系统安全设计
|
7月前
|
监控 安全 Java
基于Java的区块链数字身份认证系统架构设计
基于Java的区块链数字身份认证系统架构设计