Intel CPU的CPUID指令(转载)

简介:

Intel CPU的CPUID指令

 Intel有一个超过100页的文档,专门介绍cpuid这条指令,可见这条指令涉及内容的丰富。

    记得去年的时候,曾经有个“英布之剑”问过我这条指令,当时并没有给出一个满意的回答,现在放假,想起来,把资料整理了一下。很久以前确实用过这条指令, 其实指令本身并没有什么难的,关键是看你有没有耐心研读完繁琐的资料,当然还得对CPU有一定的了解,如果“英布之剑”看到这篇文章,而且仍然需要更详细 的资料,可以给我一个联系方式,或者相互之间可以交流一下。

    cpuid就是一条读取CPU各种信息的一条指令,大概是从80486的某个版本开始就存在了。似乎是从80386开始,当CPU被RESET以 后,CPU会在EDX寄存器中返回一个32bits的CPU签名(Processor Identification Signature),但这时候CPU还没有CPUID这条指令,后来出现了这条指令后,软件无需以来CPU复位就可以读出这个CPU签名,同时还可以读 出很多CPU的相关信息。

    CPUID这条指令,除了用于识别CPU(CPU的型号、家族、类型等),还可以读出CPU支持的功能(比如是否支持MMX,是否支持4MB的页等等), 内容的确是十分丰富。CPUID指令有两组功能,一组返回的是基本信息,另一组返回的是扩展信息,本文介绍基本信息部分,扩展信息部分下篇中介绍。本文所 在程序或程序片段,均使用MASM 6.11编译连接,可以在DOS(包括虚拟机的DOS下)运行。

1、如何判断CPU是否支持CPUID指令

    前面说过,大概是从80486开始才有的cpuid这个指令,是不是所有的80486家族CPU都有这个指令我也不是很清楚,但在EFLAGS中的bit 21可以识别CPU是否支持CPUID指令,如下图:

图1

    在8086和8088CPU中,FLAGS只有16位长,在80386CPU中,bit 21被保留未用,在支持CPUID指令的CPU中,这一位将为1。

2、CPUID指令的执行方法

    把功能代码放在EAX寄存器中,执行CPUID指令即可。例如:

    mov eax, 1
    cpuid

    前面说过CPUID指令分为两组,一组返回基本信息,一组返回扩展信息,当执行返回基本信息的CPUID指令时,EAX中功能代码的bit 31为0,当执行返回扩展信息的CPUID指令时,EAX中的功能代码的bit 31为1。那么不管是那组功能,如何知道EAX中的功能代码最大可以是多少呢?根据Intel的说明,可以用如下方法:

    mov eax, 0
    cpuid

    执行完CPUID指令后,EAX中返回的值就是返回基本信息时,功能代码的最大值,在执行CPUID指令要求返回基本信息时,EAX中的值必须小于或等于该值。

    mov eax, 80000000h
    cpuid

    执行完CPUID指令后,EAX中返回的值就是返回扩展信息时,功能代码的最大值,在执行CPUID指令要求返回扩展信息时,EAX中的值必须小于或等于该值。

    由于很多编译器都不能编译CPUID指令,所以了解CPUID指令的操作码是必要的,CPUID指令的操作码是:

    0FA2h

3、返回基本信息的功能全貌

    在实际介绍每一个功能之前,我们先通过一张图了解一下返回基本信息的功能全貌。

 

图2

4、EAX=0:获取CPU的Vendor ID

    Vendor ID这个东西,在以前介绍PCI的文章中应该介绍过,实际上就是制造商的标识,用下面的方法执行该功能:

    mov eax, 0
    cpuid

    执行CPUID指令后,AX中返回的内容前面已经说过了,返回的Vendor ID固定为12个ASCII字符依次存放在EBX、EDX、ECX中,对于Intel的CPU,返回的字符串永远是:GenuineIntel。对应在三个寄存器中的值如下:

    EBX=756E6547h,EDX=49656E69h,ECX=6C65746Eh

    大家可以参考图2。

    尽管本文是介绍Intel的CPUID指令,但下面还是尽我所知,列出其它厂家生产的IA-32架构CPU的Vendor ID,希望能对需要这些资料的人有所帮助。

  • AMDisbetter! ---- 早期AMD K5芯片的工程样品芯片
  • AuthenticAMD ---- AMD
  • CentourHauls ---- Centour
  • CyrixInstead ---- Cyrix
  • GenuineTMx86 或 TransmetaCPU ---- Transmeta
  • Geode by NSC ---- National Semiconductor
  • NexGenDriven ---- NexGen
  • SiS SiS SiS  ---- SiS
  • RiseRiseRise ---- Rise
  • UMC UMC UMC  ---- UMC
  • VIA VIA VIA  ---- VIA

5、EAX=1:处理器签名(Processor Signiture)和功能(Feature)位

    mov eax, 1
    cpuid
    执行完成后,处理器签名放在EAX中,功能位及其它杂七杂八的内容分别放在EBX、ECX和EDX中。

  • 处理器签名(Processor Signiture):
        返回在EAX中,定义如下:

    图中的灰色区域表示没有定义。前面说过,当CPU复位时,会在EDX中返回处理器签名,从80486以后,这个签名和上面的定义完全一样,只是放在不同的 寄存器中而已。前面还提到过,80386在复位时也返回处理器签名,但80386返回的签名格式是和上面不同的,后面可能会提到。

    通过处理器签名,可以确定CPU的具体型号,以下是部分Intel CPU的处理器签名数据(资料来自Intel):

    前面说过,80386尽管没有CPUID指令,但在复位时也是可以返回处理器签名的,下面是80386返回的处理器签名的格式:

     下面是80386处理器签名的识别方法(资料来自Intel):

  • 关于Stepping的说明:

    Intel和AMD都有Stepping的概念,用来标识一款同样规模的微处理器从一开始到你用的这款处理器经历的设计过程,用一个字母和一个数字表示。 一般来说,一款同样规模的微处理器的第一个版本是A0,如果改进了设计,则可以通过改变字母或者数字进行标识,如果仅仅改变数字(比如改成A3),说明进 行了一些辅助的改进,如果字母和数字都改变,说明改动较大,Stepping可以使用户可以识别微处理器的版本。下面是一个Stepping的例子(不知 道为什么穿上来后图这么小)。

  • 当处理器签名一样时的处理

     有时候,从处理器签名上仍然不能识别CPU,比如根据Intel提供的资料,Pentium II, Model 5、Pentium II Xeon, Model 5和Celeron®, Model 5的处理器签名完全一样,要区别他们只能通过检查他们的高速缓存(Cache)的大小,后面将介绍使用CPUID指令获得CPU高速缓存信息的方法,如果 没有高速缓存,则是Celeron®处理器;如果L2高速缓存为1MB或者2MB,则应该是Pentium II Xeon处理器,其它情况则应该是Pentium II处理器或者是只有512KB高速缓存的Pentium II Xeon处理器。

    有些情况下,如果从处理器签名上不能区分CPU,也可以使用Brand ID(在EBX的bit7:0返回)来区分CPU,比如Pentium III, Model 8、Pentium III Xeon, Model 8和Celeron®, Model 8三种处理器的处理器签名也是一样的,但它们的Brand ID是不同的。

  • 关于处理器类型的定义

    在处理器签名中的bit12:13返回的是处理器类型,其定义如下

    Value    Descriptor
    ---------------------------------------------
     00      以前的OEM处理器
     01      OverDrive®处理器
     10      多处理器(指可用于多处理器系统)

  •  功能标志(Feature Flag)

    在EDX和ECX中返回的功能标志表明着该CPU都支持那些功能,EDX定义如下(资料来源与Intel):

    bit  Name  Description
    --------------------------------------------------------------------------------
     00  FPU   FPU On-chip
     01  VME   Virtual Mode Extended
     02  DE    Debugging Extension
     03  PSE   Page Size Extension
     04  TSC   Time Stamp Counter
     05  MSR   Model Specific Registers 
     06  PAE   Physical Address Extension
     07  MCE   Machine-Check Exception
     08  CX8   CMPXCHG8 Instruction
     09  APIC  On-chip APIC Hardware
     10        Reserved
     11  SEP   Fast System Call
     12  MTRR  Memory Type Range Registers
     13  PGE   Page Global Enable
     14  MCA   Machine-Check Architecture
     15  CMOV  Conditional Move Instruction
     16  PAT   Page Attribute Table
     17  PSE-36 36-bit Page Size Extension
     18  PSN   Processor serial number is present and enabled
     19  CLFSH CLFLUSH Instruction
     20        Reserved
     21  DS    Debug Store
     22  ACPI  Thermal Monitor and Software Controlled Clock Facilities
     23  MMX   MMX technology
     24  FXSR  FXSAVE and FXSTOR Instructions
     25  SSE   Streaming SIMD Extensions
     26  SSE2  Streaming SIMD Extensions 2
     27  SS    Self-Snoop
     28  HTT   Multi-Threading
     29  TM    Thermal Monitor
     30  IA64  IA64 Capabilities
     31  PBE   Pending Break Enable

    ECX定义如下(资料来自Intel):

     bit   Name     Description
    ---------------------------------------------------------
      00   SSE3     Streaming SIMD Extensions 3
      01            Reserved
      02   DTES64   64-Bit Debug Store
      03   MONITOR  MONITOR/MWAIT
      04   DS-CPL   CPL Qualified Debug Store
      05   VMX      Virtual Machine Extensions
      06   SMX      Safer Mode Extensions
      07   EST      Enhanced Intel SpeedStep® Technology
      08   TM2      Thermal Monitor 2
      09   SSSE3    Supplemental Streaming SIMD Extensions 3
      10   CNXT-ID  L1 Context ID
    12:11           Reserved
      13   CX16     CMPXCHG16B
      14   xTPR     xTPR Update Control
      15   PDCM     Perfmon and Debug Capability
    17:16           Reserved
      18   DCA      Direct Cache Access
      19   SSE4.1   Streaming SIMD Extensions 4.1
      20   SSE4.2   Streaming SIMD Extensions 4.2
      21   x2APIC   Extended xAPIC Support
      22   MOVBE    MOVBE Instruction
      23   POPCNT   POPCNT Instruction
    25:24           Reserved
      26   XSAVE    XSAVE/XSTOR States
      27   OSXSAVE
    31:28           Reserved

    下面是在DEBUG中当EAX=0时执行CPUID指令时的情况:

 

    下面是在DEBUG中当EAX=1时执行CPUID指令时的情况

 

 

   

 

6、EAX=2:高速缓存描述符(Cache Descriptor)

    mov eax, 2
    cpuid

    执行完CPUID指令后,高速缓存描述符和TLB(Translation Lookable Buffer)特性将在EAX、EBX、ECX和EDX中返回,每个寄存器中的4个字节分别表示4个描述符,描述符中不同的值表示不同的含义(后面有定 义),其中EAX中的最低8位(AL)的值表示要得到完整的高速缓存的信息,需要执行EAX=2的CPUID指令的次数(一般都为1,在我这里的数台机器 里,还没有为2的),同时,寄存器的最高位(bit 31)为0,表示该寄存器中的描述符是有效的,下面是描述符值的定义(资料来源与Intel):

    Value   Cache or TLB Descriptor Description
    ----------------------------------------------------------------------------------------
     00h    Null
     01h    Instruction TLB: 4-KB Pages, 4-way set associative, 32 entries
     02h    Instruction TLB: 4-MB Pages, fully associative, 2 entries
     03h    Data TLB: 4-KB Pages, 4-way set associative, 64 entries
     04h    Data TLB: 4-MB Pages, 4-way set associative, 8 entries
     05h    Data TLB: 4-MB Pages, 4-way set associative, 32 entries
     06h   1st-level instruction cache: 8-KB, 4-way set associative, 32-byte line size
     08h   1st-level instruction cache: 16-KB, 4-way set associative, 32-byte line size
     09h   1st-level Instruction Cache: 32-KB, 4-way set associative, 64-byte line size
     0Ah   1st-level data cache: 8-KB, 2-way set associative, 32-byte line size
     0Ch   1st-level data cache: 16-KB, 4-way set associative, 32-byte line size
     0Dh   1st-level Data Cache: 16-KB, 4-way set associative, 64-byte line size, ECC
     21h   256-KB L2 (MLC), 8-way set associative, 64-byte line size
     22h   3rd-level cache: 512-KB, 4-way set associative, sectored cache, 64-byte line size
     23h   3rd-level cache: 1-MB, 8-way set associative, sectored cache, 64-byte line size
     25h   3rd-level cache: 2-MB, 8-way set associative, sectored cache, 64-byte line size
     29h   3rd-level cache: 4-MB, 8-way set associative, sectored cache, 64-byte line size
     2Ch   1st-level data cache: 32-KB, 8-way set associative, 64-byte line size
     30h   1st-level instruction cache: 32-KB, 8-way set associative, 64-byte line size
     39h   2nd-level cache: 128-KB, 4-way set associative, sectored cache, 64-byte line size
     3Ah   2nd-level cache: 192-KB, 6-way set associative, sectored cache, 64-byte line size
     3Bh   2nd-level cache: 128-KB, 2-way set associative, sectored cache, 64-byte line size
     3Ch   2nd-level cache: 256-KB, 4-way set associative, sectored cache, 64-byte line size
     3Dh   2nd-level cache: 384-KB, 6-way set associative, sectored cache, 64-byte line size
     3Eh   2nd-level cache: 512-KB, 4-way set associative, sectored cache, 64-byte line size
     40h   No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rd-level cache
     41h   2nd-level cache: 128-KB, 4-way set associative, 32-byte line size
     42h   2nd-level cache: 256-KB, 4-way set associative, 32-byte line size
     43h   2nd-level cache: 512-KB, 4-way set associative, 32-byte line size
     44h   2nd-level cache: 1-MB, 4-way set associative, 32-byte line size
     45h   2nd-level cache: 2-MB, 4-way set associative, 32-byte line size
     46h   3rd-level cache: 4-MB, 4-way set associative, 64-byte line size
     47h   3rd-level cache: 8-MB, 8-way set associative, 64-byte line size
     48h   2nd-level cache: 3-MB, 12-way set associative, 64-byte line size, unified on-die
     49h   3rd-level cache: 4-MB, 16-way set associative, 64-byte line size(Intel Xeon
           processor MP, Family 0Fh, Model 06h) 2nd-level cache: 4-MB, 16-way set associative, 
           64-byte line size
     4Ah   3rd-level cache: 6-MB, 12-way set associative, 64-byte line size
     4Bh   3rd-level cache: 8-MB, 16-way set associative, 64-byte line size
     4Ch   3rd-level cache: 12-MB, 12-way set associative, 64-byte line size
     4Dh   3rd-level cache: 16-MB, 16-way set associative, 64-byte line size
     4Eh   2nd-level cache: 6-MB, 24-way set associative, 64-byte line size
     50h   Instruction TLB: 4-KB, 2-MB or 4-MB pages, fully associative, 64 entries
     51h   Instruction TLB: 4-KB, 2-MB or 4-MB pages, fully associative, 128 entries
     52h   Instruction TLB: 4-KB, 2-MB or 4-MB pages, fully associative, 256 entries
     55h   Instruction TLB: 2-MB or 4-MB pages, fully associative, 7 entries
     56h   L1 Data TLB: 4-MB pages, 4-way set associative, 16 entries
     57h   L1 Data TLB: 4-KB pages, 4-way set associative, 16 entries
     5Ah   Data TLB0: 2-MB or 4-MB pages, 4-way associative, 32 entries
     5Bh   Data TLB: 4-KB or 4-MB pages, fully associative, 64 entries
     5Ch   Data TLB: 4-KB or 4-MB pages, fully associative, 128 entries
     5Dh   Data TLB: 4-KB or 4-MB pages, fully associative, 256 entries
     60h   1st-level data cache: 16-KB, 8-way set associative, sectored cache, 64-byte line size
     66h   1st-level data cache: 8-KB, 4-way set associative, sectored cache, 64-byte line size
     67h   1st-level data cache: 16-KB, 4-way set associative, sectored cache, 64-byte line size
     68h   1st-level data cache: 32-KB, 4 way set associative, sectored cache, 64-byte line size
     70h   Trace cache: 12K-uops, 8-way set associative
     71h   Trace cache: 16K-uops, 8-way set associative
     72h   Trace cache: 32K-uops, 8-way set associative
     73h   Trace cache: 64K-uops, 8-way set associative
     78h   2nd-level cache: 1-MB, 4-way set associative, 64-byte line size
     79h   2nd-level cache: 128-KB, 8-way set associative, sectored cache, 64-byte line size
     7Ah   2nd-level cache: 256-KB, 8-way set associative, sectored cache, 64-byte line size
     7Bh   2nd-level cache: 512-KB, 8-way set associative, sectored cache, 64-byte line size
     7Ch   2nd-level cache: 1-MB, 8-way set associative, sectored cache, 64-byte line size
     7Dh   2nd-level cache: 2-MB, 8-way set associative, 64-byte line size
     7Fh   2nd-level cache: 512-KB, 2-way set associative, 64-byte line size
     82h   2nd-level cache: 256-KB, 8-way set associative, 32-byte line size
     83h   2nd-level cache: 512-KB, 8-way set associative, 32-byte line size
     84h   2nd-level cache: 1-MB, 8-way set associative, 32-byte line size
     85h   2nd-level cache: 2-MB, 8-way set associative, 32-byte line size
     86h   2nd-level cache: 512-KB, 4-way set associative, 64-byte line size
     87h   2nd-level cache: 1-MB, 8-way set associative, 64-byte line size
     B0h   Instruction TLB: 4-KB Pages, 4-way set associative, 128 entries
     B1h   Instruction TLB: 2-MB pages, 4-way, 8 entries or 4M pages, 4-way, 4 entries
     B2h   Instruction TLB: 4-KB pages, 4-way set associative, 64 entries
     B3h   Data TLB: 4-KB Pages, 4-way set associative, 128 entries
     B4h   Data TLB: 4-KB Pages, 4-way set associative, 256 entries
     CAh   Shared 2nd-level TLB: 4 KB pages, 4-way set associative, 512 entries
     D0h   512KB L3 Cache, 4-way set associative, 64-byte line size
     D1h   1-MB L3 Cache, 4-way set associative, 64-byte line size
     D2h   2-MB L3 Cache, 4-way set associative, 64-byte line size
     D6h   1-MB L3 Cache, 8-way set associative, 64-byte line size
     D7h   2-MB L3 Cache, 8-way set associative, 64-byte line size
     D8h   4-MB L3 Cache, 8-way set associative, 64-byte line size
     DCh   2-MB L3 Cache, 12-way set associative, 64-byte line size
     DDh   4-MB L3 Cache, 12-way set associative, 64-byte line size
     DEh   8-MB L3 Cache, 12-way set associative, 64-byte line size
     E2h   2-MB L3 Cache, 16-way set associative, 64-byte line size
     E3h   4-MB L3 Cache, 16-way set associative, 64-byte line size
     E4h   8-MB L3 Cache, 16-way set associative, 64-byte line size
     F0h   64-byte Prefetching
     F1h   128-byte Prefetching

     举例来说,在我的机器上执行记过如下:

     EAX、EBX、ECX和EDX的bit 31均为0,说明其中的描述符均有效,EAX中的低8位(AL)为1,说明执行一次即可,下面是描述符含义:

    05h:Data TLB: 4-MB Pages, 4-way set associative, 32 entries
    B0h:Instruction TLB: 4-KB Pages, 4-way set associative, 128 entries
    B1h:Instruction TLB: 2-MB pages, 4-way, 8 entries or 4M pages, 4-way, 4 entries
    
    56h:L1 Data TLB: 4-MB pages, 4-way set associative, 16 entries
    57h:L1 Data TLB: 4-KB pages, 4-way set associative, 16 entries
    F0h:64-byte Prefetching

    2Ch:1st-level data cache: 32-KB, 8-way set associative, 64-byte line size
    B4h:Data TLB: 4-KB Pages, 4-way set associative, 256 entries
    30h:1st-level instruction cache: 32-KB, 8-way set associative, 64-byte line size
    7Dh:2nd-level cache: 2-MB, 8-way set associative, 64-byte line size

7、EAX=3:处理器序列号

    mov eax,3
    cpuid

    只有Pentium III提供该功能,486以后的CPU就不再提供该功能,据说是出于隐私的原因。查看你的处理器是否支持处理器序列号功能,可以执行EAX=1的 CPUID指令,然后查看EDX的PSN功能(bit 18),如果为1,说明你的处理器可以返回序列号,否则不支持序列号功能或者是序列号功能被关闭了。

    处理器序列号一共96位,最高32位就是处理器签名,通过执行EAX=1的CPUID指令获得,其余的64位在执行EAX=3的CPUID指令后,中间32位在EDX中,最低32位在ECX中。

    顺便提一句,AMD所有的CPU都没有提供过处理器序列号的功能。

    CPUID指令的基本信息,其实后面还有好几个,不过我在我这里的机器(大概有7、8台吧),好像都不支持,大多数只支持EAX=0、1、2三个,所以后面的就不介绍了。

8、EAX=80000001h:最大扩展功能号

    mov eax, 80000001h
    cpuid

    该功能除了能够向(一)中介绍的那样返回CPU支持的最大扩展功能号外,并没有其它作用,EBX、ECX、EDX都不返回有意义的信息。

9、EAX=80000002h:返回CPU支持的扩展功能

    mov eax, 80000002h
    cpuid

    执行CPUID指令后,扩展功能标志在EDX和ECX中返回,EDX中的定义如下:

     Bit    Name      Description
    -------------------------------------------------------------------
    10:00             Reserved
      11    SYSCALL   SYSCALL/SYSRET 
    19:12             Reserved
      20    XD        Bit Execution Disable Bit
    28:21             Reserved
      29    Intel® 64 Intel® 64 Instruction Set Architecture
    31:30             Reserved

    返回在ECX中的位定义:
     Bit    Name      Description
    -------------------------------------------------------------------
      0     LAHF      LAHF / SAHF
    31:01             Reserved

10、EAX=80000002h、80000003h、80000004h:返回处理器名称/商标字符串

    mov eax, 80000002h
    cpuid
    ......
    mov eax, 80000003h
    cpuid
    ......
    mov eax, 80000004h
    cpuid

    每次调用CPUID分别在EAX、EBX、ECX、EDX中返回16个ASCII字符,处理器名称/商标字串最多48个字符,前导字符为空格,结束字符为 NULL,在寄存器中的排列顺序为little-endian(即低字符在前),下面程序可以在DOS下显示处理器名称/商标字串(使用MASM 6编译)。

                .model tiny
                .386
cseg            segment para public 'code'
                org     100h
                assume  cs:cseg, ds:cseg, es:cseg
cpuid           macro
                db      0fh
                db      0a2h
endm
begin:
                mov     eax, 80000000h
                cpuid
                cmp     eax, 80000004h
                jb      not_supported
                mov     di, offset CPU_name
                mov     eax, 80000002h
                cpuid
                call    save_string
                mov     eax, 80000003h
                cpuid
                call    save_string
                mov     eax, 80000004h
                cpuid
                call    save_string
                mov     dx, offset crlf
                mov     ah, 9
                int     21h
                cld
                mov     si, offset CPU_name
spaces:
                lodsb
                cmp     al, ' '
                jz      spaces
                cmp     al, 0
                jz      done
disp_char:
                mov     dl, al
                mov     ah, 2
                int     21h
                lodsb
                cmp     al, 0
                jnz     disp_char
done:
                mov     ax, 4c00h
                int     21h
not_supported:
                jmp     done
save_string:
                mov     dword ptr [di], eax
                mov     dword ptr [di + 4], ebx
                mov     dword ptr [di + 8], ecx
                mov     dword ptr [di + 12], edx
                add     di, 16
                ret
crlf            db      0dh, 0ah, '$'
CPU_name        db      50 dup(0)
cseg            ends
                end     begin

11、EAX=80000005h:备用

12、EAX=80000006h:扩展L2高速缓存功能

    mov eax, 80000006h
    cpuid

    执行完CPUID指令后,相应信息在ECX中返回,以下是ECX中返回信息的定义:

     Bits    Description
    -----------------------------------------------------------
    31:16    L2 Cache size described in 1024-byte units.
    15:12    L2 Cache Associativity Encodings
               00h Disabled
               01h Direct mapped
               02h 2-Way
               04h 4-Way
               06h 8-Way
               08h 16-Way
               0Fh Fully associative
    11:8     Reserved
     7:0     L2 Cache Line Size in bytes. 

13、EAX=80000007h:电源管理

    mov eax, 80000007h
    cpuid

    执行CPUID指令后,是否支持电源管理功能在EDX的bit8中返回,其余位无意义。

14、EAX=80000008h:虚拟地址和物理地址大小

    mov eax, 80000008h
    cpuid

    执行CPUID指令后,物理地址的大小在EAX的bit[7:0]返回,虚拟地址的大小在EAX的bit[15:8]返回,返回的内容为虚拟(物理)地址的位数。例如在我的机器上的运行结果如下:


本文转自 不得闲 博客园博客,原文链接: http://www.cnblogs.com/DxSoft/articles/5053954.html  ,如需转载请自行联系原作者

http://www.cnblogs.com/DxSoft/articles/5053954.html

相关文章
|
8月前
|
缓存 Linux Go
一次性构建出多CPU指令集的 Docker 镜像
本文介绍了使用 Docker Buildx 构建跨平台 Docker 镜像的流程。首先确保系统为 Ubuntu 22.04,安装 Docker 和相关依赖。然后配置 Docker Buildx,编写 Go 程序和 Dockerfile。接着,创建构建脚本 `build.sh` 自动化构建并推送镜像到 Docker Hub。运行此脚本将为不同平台(如 amd64, arm64)构建并推送镜像。最后,在 Docker Hub 可查看构建结果,并可在其他系统上测试镜像。
128 3
|
Docker Windows 容器
cpu不支持avx指令集怎么办
如果CPU不支持AVX指令集,可以考虑以下两种解决方案: 更新BIOS版本:在某些情况下,更新BIOS版本可能会支持AVX指令集。可以联系电脑厂商或者查阅相关教程进行BIOS更新。 更换支持AVX指令集的CPU:如果更新BIOS版本后仍不支持AVX指令集,那么可以考虑更换支持AVX指令集的CPU。可以根据自己的需求和预算选择适合的CPU。 另外,如果在tf1.6以后的官方的tf包都是用AVX编译的,而电脑的CPU不支持AVX指令集,那么可以考虑使用Docker来配置运行环境。但需要注意,Docker在Windows上配置稍显繁琐,并需要配置虚拟机等其他东西。 总的来说,如果不支持AVX指令
4494 0
|
算法 编译器
【计算机架构】响应时间和吞吐量 | 相对性能 | 计算 CPU 时间 | 指令技术与 CPI | T=CC/CR, CC=IC*CPI
【计算机架构】响应时间和吞吐量 | 相对性能 | 计算 CPU 时间 | 指令技术与 CPI | T=CC/CR, CC=IC*CPI
1232 1
|
8月前
|
存储 Ruby 内存技术
【机组期末速成】CPU的结构与功能|CPU结构|指令周期概述|指令流水线|中断系统
【机组期末速成】CPU的结构与功能|CPU结构|指令周期概述|指令流水线|中断系统
284 1
|
3月前
CPU的工作原理基于其内部结构,通过执行指令来完成各种任务
CPU的工作原理基于其内部结构,通过执行指令来完成各种任务
99 2
|
2月前
|
存储 人工智能 编译器
【AI系统】CPU 指令集架构
本文介绍了指令集架构(ISA)的基本概念,探讨了CISC与RISC两种主要的指令集架构设计思路,分析了它们的优缺点及应用场景。文章还简述了ISA的历史发展,包括x86、ARM、MIPS、Alpha和RISC-V等常见架构的特点。最后,文章讨论了CPU的并行处理架构,如SISD、SIMD、MISD、MIMD和SIMT,并概述了这些架构在服务器、PC及嵌入式领域的应用情况。
93 4
|
7月前
汇编语言(第四版) 实验一 查看CPU和内存,用机器指令和汇编指令编程
汇编语言(第四版) 实验一 查看CPU和内存,用机器指令和汇编指令编程
111 1
|
7月前
|
芯片
芯片设计 | 一文读懂,CPU、精简指令集、复杂指令集该如何理解
芯片设计 | 一文读懂,CPU、精简指令集、复杂指令集该如何理解
436 0
|
8月前
|
存储 Java 索引
探索CPU的黑盒子:解密指令执行的秘密
本文深入探讨了CPU执行指令的相关知识,包括CPU内部的寄存器组成、程序计数器的作用、函数调用机制以及CPU指令执行的五个阶段。通过学习这些内容,读者可以进一步了解计算机的工作原理。
109 1
探索CPU的黑盒子:解密指令执行的秘密
|
8月前
|
存储 Java 程序员
cpu与指令集
cpu与指令集
103 0

相关课程

更多