David Atienza博士专访:适用性是可穿戴设备商业化关键所在

简介:

可穿戴设备应及时收集数据,切身考虑用户需求,只有这样,产业才能实现真正的商业化发展。

近日,由工业和信息化部人才交流中心主办,江北新区IC智慧谷顶山产业园协办的“芯动力”人才发展计划国际名家讲堂系列最新活动在南京浦口区举办。作为活动的全程支持媒体,镁客网受邀对本次讲座的专家导师瑞士洛桑联邦理工学院副教授David Atienza博士进行了一次专访。

David Atienza博士专访实录:适用性是可穿戴设备商业化关键所在

左起:工信部IC Power产业合作组王喆、洛桑联邦理工学院David Atienza博士、镁客网主编王刚

David Atienza博士表示,在过去几年中,可穿戴设备的发展方向有所跑偏,因为这些设备研发商并没有实际的去测量或收取用户反馈数据,导致了产品的不适用性和无法给用户安全感。未来,我们的可穿戴设备应该与物联网紧密连接,并切身考虑用户需求,只有这样,产业才能实现真正的商业化发展。

以下是镁客网对David Atienza博士的专访实录:

David Atienza博士专访实录:适用性是可穿戴设备商业化关键所在

镁客网:David 您好,我们了解到,您的研究主要是针对“高性能多处理器系统级芯片(MPSOC)和低功耗嵌入式系统的设计方法”的,包括针对2D和3D MPSoCs的新型热感知设计,以及针对无线人体传感器网络,动态内存管理和互连层次结构优化的设计方法和架构。可以请您先介绍一下您在可穿戴设备的功耗和系统优化方面取得了哪些最新的进展吗?

David:近期,我们已经在EPFL的嵌入式系统实验室(ESL)中取得了非常重要的进展了。首先,我们证明了近阈值多核心计算架构是更加节能的,它能使单核微控制器能够通过处理下一代智能型可穿戴设备的复杂生物信号,甚至可以在穿戴式系统中运行机器学习算法,而不用将所有数据发送到远程云计算系统中。此外,在ESL的系统层面,我们证明了压缩感应是可应用于基于ECG监测下的可穿戴设备的,它可以显著的节省我们在检测生物信号和采样所需要耗费的精力。

镁客网:对于可穿戴设备的商业化前景,您认为目前哪些方向的应用已经成熟或具有可预见的成熟市场环境?

David:我认为,在过去几年时间里,面向健康和消费者市场的大多数现有可穿戴设备的应用方向并不是很正确的,因为这些设备缺乏对用户的测量或用户提供的反馈数据及临床验证,这也是大多数不愿接受这些设备的原因之一。但我认为,这一领域的产品正在迅速朝健康、可靠、经认证的方向发展,在系统保障用户隐私和健康的前提下,面向健康和消费者市场的可穿戴设备是可具有成熟的市场的

镁客网:我们一直在提“可穿戴设备”的概念,前几年这一类型的产品也大红大紫过,其中最为突出的就是“智能手环”。但是它们却迅速没落了,全球出货量大幅下滑,生厂商也大批倒闭或重组,您认为出现这种局面的原因有哪些?这其中除了它的实用性不足之外,当下这些产品在技术方面有哪些是急需改进的

David:其实,当下可穿戴设备产业下滑的情况与我之前的预期是一致,以“智能手环”这一领域为例,大多数的产品是缺乏临床验证的,这使得很多用户对手环系统给出的数据持质疑态度,例如完成的步骤数量或每天消耗的热量等,这也是此类产品销售量不理想的重要原因之一。

不过,如果这些设备商可以很好的认识到这一点并对他们的产品进行改进的话,那么我认为这一领域还是很有发展潜力的。此外,用户界面方面,研发商应该多加考虑产品的适用和便捷性,并尽力使产品具备手机不可替代的功能,才有可能无让智能手环真正、稳定的商业化。

镁客网:那么,您认为可穿戴设备是有必要作为单独产品出现,还是作为日常用品的一个特性出现呢?

David:我认为,随着智能手机的普及,可穿戴设备是应该并将会成为我们日常生活所需的东西的,这只是一个时间问题。等到可穿戴设备拥有它们真正应该具备的功能时,人们就不会把它们当做一个“有趣的小工具”,而是将它们视为可提高我们生活质量的必备用品。

镁客网:您是怎样看待可穿戴设备和物联网之间的关系的?

David:可穿戴设备是物联网中的一个关键组成部分,对于我来说,它们就是物联网的基础,是接物联网和人类的第一个环节。因此,IoT设备的首次集成、交互是开始于具有可靠、舒适性的可穿戴设备的,进而才与其他IoT设备进行交互,最终让智能城市、智能建筑、工业4.0等成为现实。

镁客网:我们注意到,您在课题中特别提到了“特征提取,机器学习和数据记录”,那么您认为,目前可穿戴设备对数据分析的准确性如何?距离实际应用还要多久?

David:我要强调的是,可穿戴设备从概念的提出到现在取得可在运行时提取生物信号的复杂功能这一重大进展仅有几年的时间,因此,这是一个新的领域。而让可穿戴设备“聪明”起来是取决于真正适用的用户和应用场景的,例如,我们近期已经在ESL-EPFL中证实,在心血管监测中,将可能患有心律不齐疾病的病人的ECG(心电图)输入设备后,其识别的正确率可达到95-96%。因此,我认为这一新的可穿戴设备系列(包括机载机)正在快速准备就绪,以便在获得FDA(食品药品监督管理局)认证或CE标志(一种安全认证标志)后被普通用户使用。可以乐观地认为,这一领域的产品是可以在未来几年内在市场上全面铺开的。

另一方面,像脑电图分析这样的领域,其在开发嵌入式机器学习方面有着很多的难题,因此,只有通过与云计算服务相连接,才能在短期内让可穿戴设备可以在机器学习算法上运行起来,从而为可穿戴设备提供正确的指示。

镁客网:在您的设想中,终极的可穿戴设备应用场景,是怎样的?

David:在我看来,终极的可穿戴设备是真正“聪明”、可自主供电的,并且,它们应该是可适用于每一个人。此外,这些可穿戴设备应该可以给予用户足够的安全感。

所以,我所预计的终极的可穿戴设备在形态上可能就是一个简单的小贴纸,只要贴在皮肤上就可以直接与大脑沟通、交流,不需要我们输入一个字。虽然这对于在当下的技术研发人员来说是极具挑战的,但我相信在未来,这一定会成为现实。

附:(本次采访英文原稿)

1, Can you tell us something about the latest developments you have made in the power consumption and system optimization of wearable devices?

In my Embedded Systems Laboratory (ESL) at EPFL, we have made very important recent developments that prove that near-threshold multi-core computing architectures are more energy-efficient that single-core microcontrollers for complex bio-signal processing in next-generation smart wearable devices, and that they can be even used to run machine learning algorithms on-board in wearable systems instead of sending all the data to remote cloud computing systems (which requires a lot more energy than computing on-board actually). Also, at the system level at ESL we have been the first ones to demonstrate that compressive sensing can be used in ECG-based monitoring in wearables to dramatically reduce the energy spent in bio-signal sensing and sampling.

2, For the prospects of the commercialization of wearable device, do you think the current direction of the application have matured or have a predictable mature market environment?

I believe the application direction of most of current wearables in the last years (oriented towards wellness and consumer markets) is not the right application to make a difference, as these devices lack clinical validation on what they measure or provide as feedback to the user. Therefore, many people start being reluctant to accept them any longer, but I think this area of products is rapidly evolving towards truly health-reliable certified devices, and it will have a mature market environment in preventive (and personalized) healthcare if the systems are validated well and do not bother the user (i.e., we should not realize they are there).

3, We have been talking about the concept of "wearable equipment" and this kind of product also flourished a few years ago, one of the most popular is the "smart bracelet." But they are declining rapidly, the global shipments fell sharply and many manufacturers also closed down or went through reorganization. What makes this happen? Which point of this product is urgently needed to improve in addition to its lack of practical use?

This situation is very much aligned with my previous answer because “smart bracelet” are one clear example of wearables where the lack of validation has made many customers believe that the current systems are not reliable in what they indicate (e.g., amount of steps done or calories spent per day, etc.) so do not buy them anymore. Thus, this is one clear example where the real validation and adaptability of the devices, as these devices lack clinical validation on what they measure or provide as feedback to the user. Therefore, many people start being reluctant to use them any longer. However, I think this family of products will gain ground again if the devices are well tuned to be reliable. On the other hand, a key point that needs to be improved is the user interface, as it is one of the main limitations for a practical use (e.g., how are you going to write an e-mail or reply in an elaborated way to a message that somebody has sent you?). Until the smart bracelets (or smartwatches) are not able to remove the need for a phone completely, they will not reach a real stable commercial success.

4, Just continue, do you think that wearable devices should be used as a separate product, or as a feature of daily use?

I believe wearables should (and will) become a (normal) feature of our daily life, as the smartphone has done in the end. It is just a matter of time and finding the right features for them so that people do not see them as “funny gadgets” but rather elements that improve our quality of life.

5, What about the relationship between wearable devices and IoT?

Wearable devices are a key component in the idea of IoT because for me they are at the foundations of IoT. Indeed, they must create the first link between IoT and human beings by allowing the other connected things (not in contact with our bodies) to understand what we feel or need or want. So the first integration of IoT devices starts on having reliable (and comfortable) wearable devices that can interact with the other IoT devices to make smart cities, smart building or appealing Industry 4.0 environments (to mention a few) interacting with humans.

6, We note that you specifically mentioned the "feature extraction, machine learning and data records" in your subject, so I want to ask how accuracy the data analysis result of wearable device is and how long it can be practically adapted?

Note that it is already a major progress (only done in the couple of years) that wearables can run machine learning by extracting at run-time complex features from biological signals. So this is a new field to make wearable devices truly adaptive to the person wearing them (so “smart” overall) and the current accuracy that these devices can reach depends on the application. For instance, in cardiovascular monitoring, the possible ECG inputs can be identified as correct or having a possible arrhythmia in the order of 95-96%, as we have proved recently at ESL-EPFL. So this new family of wearable devices including on-board machine are getting ready fast to be use in the general audience (after passing the corresponding FDA or CE mark, depending on the market in US or Europe). So I am optimist that we can have them on the market in this area in the next couple of years. On the other hand, other areas like EEG analysis are having more difficulties to develop embedded machine learning, so wearables having this support will only be deployed in the short term (4-5 years in my view) by connecting them to cloud computing services, where these machine learning algorithms will be running on the background and providing the indications to the wearables to adapt to their results.

7, Can you describe how the ultimate wearable device application scene will be in your vision?

In my mind the ultimate wearable devices will need to be really smart, autonomous (do not need any battery) and able to adapt to each person. Moreover, they will not be disturbing us at all (so almost to the point of being almost “transparent”). Therefore, in my view they could (eventually) have the shape of a simple tiny sticker that we put on our skin and can interact with use by communicating directly with the brain without us pronouncing a word. I know this is really challenging (or essentially impossible) with our current technology, but I am confident that we will progress enough to make it happen in the future.


原文发布时间: 2017-04-27 18:40
本文作者: 伶轩
本文来自云栖社区合作伙伴镁客网,了解相关信息可以关注镁客网。
相关实践学习
阿里云AIoT物联网开发实战
本课程将由物联网专家带你熟悉阿里云AIoT物联网领域全套云产品,7天轻松搭建基于Arduino的端到端物联网场景应用。 开始学习前,请先开通下方两个云产品,让学习更流畅: IoT物联网平台:https://iot.console.aliyun.com/ LinkWAN物联网络管理平台:https://linkwan.console.aliyun.com/service-open
相关文章
|
关系型数据库 MySQL Java
【面试题精讲】Mysql如何实现乐观锁
【面试题精讲】Mysql如何实现乐观锁
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
多模态AI核心技术:CLIP与SigLIP技术原理与应用进展
近年来,多模态表示学习在人工智能领域取得显著进展,CLIP和SigLIP成为里程碑式模型。CLIP由OpenAI提出,通过对比学习对齐图像与文本嵌入空间,具备强大零样本学习能力;SigLIP由Google开发,采用sigmoid损失函数优化训练效率与可扩展性。两者推动了多模态大型语言模型(MLLMs)的发展,如LLaVA、BLIP-2和Flamingo等,实现了视觉问答、图像描述生成等复杂任务。这些模型不仅拓展了理论边界,还为医疗、教育等领域释放技术潜力,标志着多模态智能系统的重要进步。
1405 13
多模态AI核心技术:CLIP与SigLIP技术原理与应用进展
|
存储 开发工具 C#
Git Extensions:一个.NET开源的 Git 图形用户界面(GUI)工具
Git Extensions:一个.NET开源的 Git 图形用户界面(GUI)工具
559 0
|
11月前
|
机器学习/深度学习 Rust 算法
Python环境管理的新选择:UV和Pixi,高性能Python环境管理方案
近期Python生态系统在包管理领域发生了重要变化,Anaconda调整商业许可证政策,促使社区寻找更开放的解决方案。本文介绍两款新一代Python包管理工具:UV和Pixi。UV用Rust编写,提供高性能依赖解析和项目级环境管理;Pixi基于Conda生态系统,支持conda-forge和PyPI包管理。两者分别适用于高性能需求和深度学习项目,为开发者提供了更多选择。
2476 2
|
数据挖掘 UED
ClkLog埋点分析系统支持漏斗分析
漏斗分析是基于事件的一种分析模型。 漏斗分析主要是对一个多步骤的场景进行的每一步的转化数据分析。可以理解为是从顶部(广泛数据)到底部(目标数据)逐步筛选和转化分析的过程。
ClkLog埋点分析系统支持漏斗分析
|
Cloud Native 安全 应用服务中间件
云原生|docker本地仓库的搭建(简易可快速使用的本地仓库)(修订版)
云原生|docker本地仓库的搭建(简易可快速使用的本地仓库)(修订版)
497 0
|
机器学习/深度学习 人工智能 监控
计算机视觉技术在安防领域的应用深度解析
【7月更文挑战第28天】计算机视觉技术作为人工智能领域的重要分支,在安防领域的应用前景广阔。通过不断提升技术性能和解决实际应用中的问题,计算机视觉技术将进一步提升安防工作的效率和准确性,为公共安全和社会稳定贡献更大的力量。
|
供应链 搜索推荐 数据挖掘
Pandas实战案例:电商数据分析的实践与挑战
【4月更文挑战第16天】本文通过一个电商数据分析案例展示了Pandas在处理销售数据、用户行为分析及商品销售趋势预测中的应用。在数据准备与清洗阶段,Pandas用于处理缺失值、重复值。接着,通过用户购买行为和商品销售趋势分析,构建用户画像并预测销售趋势。实践中遇到的大数据量和数据多样性挑战,通过分布式计算和数据标准化解决。未来将继续深入研究Pandas与其他先进技术的结合,提升决策支持能力。
|
数据安全/隐私保护 开发者 iOS开发
iOS-打包上架构建版本一直不出现/正在处理/自动消失
iOS-打包上架构建版本一直不出现/正在处理/自动消失
342 0
|
存储 关系型数据库 大数据
PolarDB 开源评测
开源PolarDB-X,源自阿里云PolarDB,具备分布式存储和计算能力,以其开源特性、成本效益、社区支持和灵活性受到青睐。支持多种部署模式,适合大规模数据处理。然而,其复杂性与文档不完善可能是挑战,建议优化部署流程以降低使用难度。