<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html><head><meta http-equiv="Cont

本文涉及的产品
转发路由器TR,750小时连接 100GB跨地域
简介: 为什么要对数据进行归一化?    归一化后加快了梯度下降求最优解的速度;2)归一化有可能提高精度。下面我简单扩展解释下这两点。

为什么要对数据进行归一化?

    归一化后加快了梯度下降求最优解的速度;2)归一化有可能提高精度。下面我简单扩展解释下这两点。

1 归一化为什么能提高梯度下降法求解最优解的速度?

      斯坦福机器学习视频做了很好的解释:https://class.coursera.org/ml-003/lecture/21

      如下图所示,蓝色的圈圈图代表的是两个特征的等高线。其中左图两个特征X1和X2的区间相差非常大,X1区间是[0,2000],X2区间是[1,5],其所形成的等高线非常尖。当使用梯度下降法寻求最优解时,很有可能走“之字型”路线(垂直等高线走),从而导致需要迭代很多次才能收敛;

      而右图对两个原始特征进行了归一化,其对应的等高线显得很圆,在梯度下降进行求解时能较快的收敛。

      因此如果机器学习模型使用梯度下降法求最优解时,归一化往往非常有必要,否则很难收敛甚至不能收敛。

2 归一化有可能提高精度

     一些分类器需要计算样本之间的距离(如欧氏距离),例如KNN。如果一个特征值域范围非常大,那么距离计算就主要取决于这个特征,从而与实际情况相悖(比如这时实际情况是值域范围小的特征更重要)。

3 归一化的类型

1)线性归一化

x' = \frac{x - \text{min}(x)}{\text{max}(x)-\text{min}(x)}

      这种归一化方法比较适用在数值比较集中的情况。这种方法有个缺陷,如果max和min不稳定,很容易使得归一化结果不稳定,使得后续使用效果也不稳定。实际使用中可以用经验常量值来替代max和min。

2)标准差标准化

  经过处理的数据符合标准正态分布,即均值为0,标准差为1,其转化函数为:

  其中μ为所有样本数据的均值,σ为所有样本数据的标准差。


3)非线性归一化

     经常用在数据分化比较大的场景,有些数值很大,有些很小。通过一些数学函数,将原始值进行映射。该方法包括 log、指数,正切等。需要根据数据分布的情况,决定非线性函数的曲线,比如log(V, 2)还是log(V, 10)等。

目录
相关文章
|
Web App开发 新零售 前端开发
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html><head><meta http-equiv="Cont
1.尽可能地了解需求,系统层面适用开闭原则 2.模块化,低耦合,能快速响应变化,也可以避免一个子系统的问题波及整个大系统 3.
750 0
|
Web App开发 前端开发
|
Web App开发 前端开发 Java
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html><head><meta http-equiv="Cont
服务端需在vm arguments一栏下加上    -agentlib:jdwp=transport=dt_socket,server=y,address=8000 并以run模式启动 如果以debug模式启动服务端...
722 0
|
Web App开发 前端开发 关系型数据库
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html><head><meta http-equiv="Cont
mysql修改表、字段、库的字符集 修改数据库字符集: ALTER DATABASE db_name DEFAULT CHARACTER SET character_name [COLLATE .
709 0
|
Web App开发 前端开发 Linux
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html><head><meta http-equiv="Cont
[root@hadoop058 ~]# mii-tool eth0: negotiated 100baseTx-FD, link ok 100M linux 下查看网卡工作速率 Ethtool是用于查询及设置网卡参数的命令。
647 0
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html><head><meta http-equiv="Cont
生产服务器环境最小化安装后 Centos 6.5优化配置备忘 本文 centos 6.5 优化 的项有18处,列表如下: 1、centos6.
1545 0
|
Web App开发 前端开发 大数据
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html><head><meta http-equiv="Cont
一、概述   多维数据模型是最流行的数据仓库的数据模型,多维数据模型最典型的数据模式包括星型模式、雪花模式和事实星座模式,本文以实例方式展示三者的模式和区别。
762 0
|
Web App开发 前端开发
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html><head><meta http-equiv="Cont
一个典型的星型模式包括一个大型的事实表和一组逻辑上围绕这个事实表的维度表。  事实表是星型模型的核心,事实表由主键和度量数据两部分组成。
541 0
|
Web App开发 前端开发 Linux
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html><head><meta http-equiv="Cont
nproc是操作系统级别对每个用户创建的进程数的限制,在Linux下运行多线程时,每个线程的实现其实是一个轻量级的进程,对应的术语是:light weight process(LWP)。
1154 0
|
Web App开发 Java
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html><head><meta http-equiv="Cont
                                                                                序列化对单例的破坏 本文将通过实例+阅读Java源码的方式介绍序列化是如何破坏单例模式的,以及如何避免序列化对单例的破坏。
935 0