<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html><head><meta http-equiv="Cont

本文涉及的产品
转发路由器TR,750小时连接 100GB跨地域
简介: 为什么要对数据进行归一化?    归一化后加快了梯度下降求最优解的速度;2)归一化有可能提高精度。下面我简单扩展解释下这两点。

为什么要对数据进行归一化?

    归一化后加快了梯度下降求最优解的速度;2)归一化有可能提高精度。下面我简单扩展解释下这两点。

1 归一化为什么能提高梯度下降法求解最优解的速度?

      斯坦福机器学习视频做了很好的解释:https://class.coursera.org/ml-003/lecture/21

      如下图所示,蓝色的圈圈图代表的是两个特征的等高线。其中左图两个特征X1和X2的区间相差非常大,X1区间是[0,2000],X2区间是[1,5],其所形成的等高线非常尖。当使用梯度下降法寻求最优解时,很有可能走“之字型”路线(垂直等高线走),从而导致需要迭代很多次才能收敛;

      而右图对两个原始特征进行了归一化,其对应的等高线显得很圆,在梯度下降进行求解时能较快的收敛。

      因此如果机器学习模型使用梯度下降法求最优解时,归一化往往非常有必要,否则很难收敛甚至不能收敛。

2 归一化有可能提高精度

     一些分类器需要计算样本之间的距离(如欧氏距离),例如KNN。如果一个特征值域范围非常大,那么距离计算就主要取决于这个特征,从而与实际情况相悖(比如这时实际情况是值域范围小的特征更重要)。

3 归一化的类型

1)线性归一化

x' = \frac{x - \text{min}(x)}{\text{max}(x)-\text{min}(x)}

      这种归一化方法比较适用在数值比较集中的情况。这种方法有个缺陷,如果max和min不稳定,很容易使得归一化结果不稳定,使得后续使用效果也不稳定。实际使用中可以用经验常量值来替代max和min。

2)标准差标准化

  经过处理的数据符合标准正态分布,即均值为0,标准差为1,其转化函数为:

  其中μ为所有样本数据的均值,σ为所有样本数据的标准差。


3)非线性归一化

     经常用在数据分化比较大的场景,有些数值很大,有些很小。通过一些数学函数,将原始值进行映射。该方法包括 log、指数,正切等。需要根据数据分布的情况,决定非线性函数的曲线,比如log(V, 2)还是log(V, 10)等。

目录
打赏
0
0
0
0
66
分享
相关文章
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html><head><meta http-equiv="Cont
在运行一个group by的sql时,抛出以下错误信息: Task with the most failures(4):  -----Task ID:  task_201411191723_723592_m_000004URL:  http://DDS0204.
1025 0
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html><head><meta http-equiv="Cont
为首次部署MongoDB做好准备:容量计划和监控 作者Mat Keep ,译者孙镜涛如果你已经完成了自己新的MongoDB应用程序的开发,并且现在正准备将它部署进产品中,那么你和你的运营团队需要讨论一些关键的问题: 最佳部署实践是什么? 为了确保应用程序满足它所必须的服务层次我们需要监控哪些关键指标? 如何能够确定添加分片的时机? 有哪些工具可以对数据库进行备份和恢复? 怎样才能安全地访问所有新的实时大数据? 本文介绍了硬件选择、扩展、HA和监控。
2648 0
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html><head><meta http-equiv="Cont
一、迁移步骤 1.首先安装最新版本gitlab(gitlab7.2安装) 2.停止旧版本gitlab服务 3.将旧的项目文件完整导入新的gitlab   bundle exec rake gitlab:import:r...
744 0
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html><head><meta http-equiv="Cont
数据仓库建模:定义事实表的粒度Posted on 2015-08-25 09:03 xuzhengzhu 阅读(28) 评论(0) 编辑 收藏 维度建模中一个非常重要的步骤是定义事实表的粒度。
729 0
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html><head><meta http-equiv="Cont
数据仓库建设步骤Posted on 2015-03-04 10:18 xuzhengzhu 阅读(1164) 评论(0) 编辑 收藏 1.系统分析,确定主题 确定一下几个因素:    ·操作出现的频率,即业务部门每隔多长时间做一次查询分析。
903 0
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html><head><meta http-equiv="Cont
电商数据分析基础指标体系 傅志华 傅志华 信息流、物流和资金流三大平台是电子商务的三个最为重要的平台。而电子商务信息系统最核心的能力是大数据能力,包括大数据处理、数据分析和数据挖掘能力。
1434 0
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html><head><meta http-equiv="Cont
     比如RDD里的计算调用了别的组件类里的方法(比如hbase里的put方法),那么序列化时,会将该方法所属的对象的所有变量都序列化的,可能有些根本没有实现序列化导致直接报错。
755 0