How Many Trees? |
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) |
Total Submission(s): 163 Accepted Submission(s): 102 |
Problem Description
A binary search tree is a binary tree with root k such that any node v reachable from its left has label (v) <label (k) and any node w reachable from its right has label (w) > label (k). It is a search structure which can find a node with label x in O(n log n) average time, where n is the size of the tree (number of vertices).
Given a number n, can you tell how many different binary search trees may be constructed with a set of numbers of size n such that each element of the set will be associated to the label of exactly one node in a binary search tree? |
Input
The input will contain a number 1 <= i <= 100 per line representing the number of elements of the set.
|
Output
You have to print a line in the output for each entry with the answer to the previous question.
|
Sample Input
1
2
3
|
Sample Output
1
2
5
卡特兰数
import java.math.BigDecimal;
import java.util.*; public class Main { public static void main(String[] args){ BigDecimal []t = new BigDecimal[101]; BigDecimal n,b; int k; Scanner cin = new Scanner(System.in); t[1] = BigDecimal.valueOf(1); for(int i = 2;i< 101;i++){ n = BigDecimal.valueOf(i); b = BigDecimal.valueOf(4).multiply(n); b = b.subtract(BigDecimal.valueOf(2)); n = n.add(BigDecimal.valueOf(1)); b = b.multiply(t[i-1]); t[i] = b.divide(n); //System.out.println(t[i]); } while(cin.hasNext()){ k = cin.nextInt(); System.out.println(t[k]); } } }
本文转自NewPanderKing51CTO博客,原文链接:
http://www.cnblogs.com/newpanderking/archive/2011/07/31/2122523.html
,如需转载请自行联系原作者
|