Siri、小冰等人工智能系统的智力水平如何?还不如6岁的孩童

简介:

人工智能还是人工智障?我们用数据说话。

一直以来,因为人工智能的某些表现,“人工智障”经常被人们挂在嘴边作为对其的称呼。而就在最近,一组数据让我们看到了一些人工智能产品的“智商水平”。

日前,中国科学院虚拟经济与数据科学研究中心在2017年Annals of Data Science期刊上发表了一篇论文,由计算机博士,互联网进化论作者刘锋,中国科学院虚拟经济与数据科学研究中心主任石勇教授,中国科学院经济管理学院刘颖副教授组成的研究团队完成,题目是“人工智能的智商评测与智能等级研究”(Intelligence Quotient and Intelligence Grade of Artificial Intelligence)。

据了解,该论文的研究开始于2012,起源是解决2010年以来不断日益高涨的人工智能威胁论,当时的思路是能否通过对比研究人工智能系统的智商发展水平并与人类智商,为解决人工智能威胁论问题寻找定量的分析方法。

基于对冯·诺伊曼结构、戴维·韦克斯勒人类智力模型等多种模型的参考,刘锋他们提出建立“标准智能模型”,从知识的获取、掌握、创新和反馈这四个维度来评价人工智能的“智商”,也便于统一描述人工智能系统和人类的特征和属性。

此外,为了更好的分析AI,人类等智能体的智能水平,研究人员把“上面的4个维度又分成图像、文字、声音的识别和输出,常识、计算、翻译、排列,创作、挑选、猜测、发现等15个小分类,从更多维度评测AI,人类的智能。

在2014年和2016年,研究人员分别对谷歌、微软、百度等多个AI系统和3个不同年龄段人类进行了测试。测试结果如下:

Siri、小冰等人工智能系统的智力水平如何?还不如6岁的孩童

Siri、小冰等人工智能系统的智力水平如何?还不如6岁的孩童

我们可以看到,经过两年的时间,虽然各科技企业人工智能技术的“智能”程度依旧不如6对的孩童,但是其中的成长速度却是不容小觑的。

Siri、小冰等人工智能系统的智力水平如何?还不如6岁的孩童

以上还只是对各科技企业人工智能系统的一个横向比较。相比于以往,在今年的论文中,该研究团队基于这个模型也对人类,AI等智能系统进行了等级分类,让人们能够更为直观的看到人工智能系统的“智商”到底如何(I 知识信息接收,O知识信息输出,S,知识信息掌握或存储,C 知识信息创新创造)。


原文发布时间: 2017-10-09 23:29
本文作者: 韩璐
本文来自云栖社区合作伙伴镁客网,了解相关信息可以关注镁客网。
相关文章
|
2月前
|
机器学习/深度学习 人工智能 测试技术
EdgeMark:嵌入式人工智能工具的自动化与基准测试系统——论文阅读
EdgeMark是一个面向嵌入式AI的自动化部署与基准测试系统,支持TensorFlow Lite Micro、Edge Impulse等主流工具,通过模块化架构实现模型生成、优化、转换与部署全流程自动化,并提供跨平台性能对比,助力开发者在资源受限设备上高效选择与部署AI模型。
350 9
EdgeMark:嵌入式人工智能工具的自动化与基准测试系统——论文阅读
|
1月前
|
人工智能 IDE 开发工具
拔俗人工智能辅助评审系统:如何用技术为“把关”提效
人工智能辅助评审系统融合大模型、提示工程与业务流程,实现上下文深度理解、场景化精准引导与无缝集成。通过自动化基础审查,释放专家精力聚焦核心决策,提升评审效率与质量,构建人机协同新范式。(239字)
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
拔俗AI人工智能评审管理系统:用技术为决策装上“智能导航”
AI评审系统融合NLP、知识图谱与机器学习,破解传统评审效率低、标准不一难题。通过语义解析、智能推理与风险预判,构建标准化、可复用的智能评审流程,助力项目质量与效率双提升。(238字)
|
11月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
949 55
|
10月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
550 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
7月前
|
人工智能 自然语言处理 API
MCP与A2A协议比较:人工智能系统互联与协作的技术基础架构
本文深入解析了人工智能领域的两项关键基础设施协议:模型上下文协议(MCP)与代理对代理协议(A2A)。MCP由Anthropic开发,专注于标准化AI模型与外部工具和数据源的连接,降低系统集成复杂度;A2A由Google发布,旨在实现不同AI代理间的跨平台协作。两者虽有相似之处,但在设计目标与应用场景上互为补充。文章通过具体示例分析了两种协议的技术差异及适用场景,并探讨了其在企业工作流自动化、医疗信息系统和软件工程中的应用。最后,文章强调了整合MCP与A2A构建协同AI系统架构的重要性,为未来AI技术生态系统的演进提供了方向。
1144 62
|
8月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
497 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
9月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
947 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
11月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
564 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
495 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络

热门文章

最新文章