用R分析时间序列(time series)数据

简介: 用R分析时间序列(time series)数据 时间序列(time series)是一系列有序的数据。通常是等时间间隔的采样数据。如果不是等间隔,则一般会标注每个数据点的时间刻度。  下面以time series 普遍使用的数据 airline passenger为例。 这是十一年的每月乘客数量,单位是千人次。 如果想尝试其他的数据集,可以访问这里:  https:

用R分析时间序列(time series)数据

时间序列(time series)是一系列有序的数据。通常是等时间间隔的采样数据。如果不是等间隔,则一般会标注每个数据点的时间刻度。

 下面以time series 普遍使用的数据 airline passenger为例。 这是十一年的每月乘客数量,单位是千人次。

如果想尝试其他的数据集,可以访问这里:  https://datamarket.com/data/list/?q=provider:tsdl

可以很明显的看出,airline passenger的数据是很有规律的。

time series data mining 主要包括decompose(分析数据的各个成分,例如趋势,周期性),prediction(预测未来的值),classification(对有序数据序列的feature提取与分类),clustering(相似数列聚类)等。

这篇文章主要讨论prediction(forecast,预测)问题。 即已知历史的数据,如何准确预测未来的数据。

先从简单的方法说起。给定一个时间序列,要预测下一个的值是多少,最简单的思路是什么呢?

(1)mean(平均值):未来值是历史值的平均。

 

(2)exponential smoothing (指数衰减):当去平均值得时候,每个历史点的权值可以不一样。最自然的就是越近的点赋予越大的权重。

或者,更方便的写法,用变量头上加个尖角表示估计值

(3) snaive : 假设已知数据的周期,那么就用前一个周期对应的时刻作为下一个周期对应时刻的预测值

(4) drift:飘移,即用最后一个点的值加上数据的平均趋势

介绍完最简单的算法,下面开始介绍两个time series里面最火的两个强大的算法: Holt-Winters 和 ARIMA。 上面简答的算法都是这两个算法的某种特例。

(5)Holt-Winters:  三阶指数平滑

 Holt-Winters的思想是把数据分解成三个成分:平均水平(level),趋势(trend),周期性(seasonality)。R里面一个简单的函数stl就可以把原始数据进行分解:

一阶Holt—Winters假设数据是stationary的(静态分布),即是普通的指数平滑。二阶算法假设数据有一个趋势,这个趋势可以是加性的(additive,线性趋势),也可以是乘性的(multiplicative,非线性趋势),只是公式里面一个小小的不同而已。  三阶算法在二阶的假设基础上,多了一个周期性的成分。同样这个周期性成分可以是additive和multiplicative的。 举个例子,如果每个二月的人数都比往年增加1000人,这就是additive;如果每个二月的人数都比往年增加120%,那么就是multiplicative。

 R里面有Holt-Winters的实现,现在就可以用它来试试效果了。我用前十年的数据去预测最后一年的数据。 性能衡量采用的是RMSE。 当然也可以采用别的metrics:

预测结果如下:

结果还是很不错的。

(6) ARIMA: AutoRegressive Integrated Moving Average

ARIMA是两个算法的结合:AR和MA。其公式如下:

是白噪声,均值为0, C是常数。  ARIMA的前半部分就是Autoregressive:, 后半部分是moving average: 。  AR实际上就是一个无限脉冲响应滤波器(infinite impulse resopnse), MA是一个有限脉冲响应(finite impulse resopnse),输入是白噪声。

ARIMA里面的I指Integrated(差分)。 ARIMA(p,d,q)就表示p阶AR,d次差分,q阶MA。  为什么要进行差分呢? ARIMA的前提是数据是stationary的,也就是说统计特性(mean,variance,correlation等)不会随着时间窗口的不同而变化。用数学表示就是联合分布相同:

当然很多时候并不符合这个要求,例如这里的airline passenger数据。有很多方式对原始数据进行变换可以使之stationary:

(1) 差分,即Integrated。 例如一阶差分是把原数列每一项减去前一项的值。二阶差分是一阶差分基础上再来一次差分。这是最推荐的做法

(2)先用某种函数大致拟合原始数据,再用ARIMA处理剩余量。例如,先用一条直线拟合airline passenger的趋势,于是原始数据就变成了每个数据点离这条直线的偏移。再用ARIMA去拟合这些偏移量。

(3)对原始数据取log或者开根号。这对variance不是常数的很有效。

如何看数据是不是stationary呢?这里就要用到两个很常用的量了: ACF(auto correlation function)和PACF(patial auto correlation function)。对于non-stationary的数据,ACF图不会趋向于0,或者趋向0的速度很慢。 下面是三张ACF图,分别对应原始数据,一阶差分原始数据,去除周期性的一阶差分数据:

确保stationary之后,下面就要确定p和q的值了。定这两个值还是要看ACF和PACF:

确定好p和q之后,就可以调用R里面的arime函数了。 值得一提的是,R里面有两个很强大的函数: ets 和 auto.arima。 用户什么都不需要做,这两个函数会自动挑选一个最恰当的算法去分析数据。

在R中各个算法的效果如下:

代码如下:

复制代码
passenger = read.csv('passenger.csv',header=F,sep=' ')
p<-unlist(passenger)
pt<-ts(p,frequency=12,start=2001)
plot(pt)
train<-window(pt,start=2001,end=2011+11/12)
test<-window(pt,start=2012)

library(forecast)
pred_meanf<-meanf(train,h=12)
rmse(test,pred_meanf$mean) #226.2657

pred_naive<-naive(train,h=12)
rmse(pred_naive$mean,test)#102.9765

pred_snaive<-snaive(train,h=12)
rmse(pred_snaive$mean,test)#50.70832

pred_rwf<-rwf(train,h=12, drift=T)
rmse(pred_rwf$mean,test)#92.66636

pred_ses <- ses(train,h=12,initial='simple',alpha=0.2)
rmse(pred_ses$mean,test) #89.77035

pred_holt<-holt(train,h=12,damped=F,initial="simple",beta=0.65)
rmse(pred_holt$mean,test)#76.86677  without beta=0.65 it would be 84.41239

pred_hw<-hw(train,h=12,seasonal='multiplicative')
rmse(pred_hw$mean,test)#16.36156

fit<-ets(train)
accuracy(predict(fit,12),test) #24.390252


pred_stlf<-stlf(train)
rmse(pred_stlf$mean,test)#22.07215

plot(stl(train,s.window="periodic"))  #Seasonal Decomposition of Time Series by Loess

fit<-auto.arima(train)
accuracy(forecast(fit,h=12),test) #23.538735

ma = arima(train, order = c(0, 1, 3),   seasonal=list(order=c(0,1,3), period=12))
p<-predict(ma,12)
accuracy(p$pred,test)  #18.55567
BT = Box.test(ma$residuals, lag=30, type = "Ljung-Box", fitdf=2)
复制代码
目录
相关文章
|
索引 Python
如何在Python中使用Pandas库进行季节性调整?
Pandas库在Python中支持季节性调整,通过`seasonal_decompose`函数实现。步骤包括:导入Pandas和statsmodels模块,准备时间序列DataFrame,调用函数分解数据为趋势、季节性和残差,可选地分析或绘制这些部分,以及根据需求去除季节性影响(原始数据减去季节性成分)。这是基础的季节性调整流程,可按实际需求调整。
631 0
|
算法 网络安全 数据安全/隐私保护
使用 openssl 生成证书
一、openssl 简介 openssl 是目前最流行的 SSL 密码库工具,其提供了一个通用、健壮、功能完备的工具套件,用以支持SSL/TLS 协议的实现。官网:https://www.openssl.
9360 0
|
网络协议 Linux
route 或 ip route命令详解
【4月更文挑战第9天】`route`和`ip route`是Linux下管理IP路由的命令,用于查看和配置路由表。`route`命令简单,可查看、添加和删除路由,而`ip route`更现代且功能强大,支持路由可信度和距离设置。`ip route show`类似于`route -n`用于显示路由信息。路由类型包括主机、网络和默认路由。在现代Linux系统中,推荐使用`ip route`。
2557 1
|
Prometheus 监控 异构计算
阿里云容器服务GPU监控2.0基础篇3:监控NVIDIA XID错误
本系列相关文章:阿里云容器服务GPU监控2.0基础篇1:基本功能使用阿里云容器服务GPU监控2.0基础篇2:监控NVLINK带宽阿里云容器服务GPU监控2.0基础篇3:监控NVIDIA XID错误阿里云容器服务GPU监控2.0进阶篇1:剖析(Profiling)GPU使用情况必备知识阿里云容器服务GPU监控2.0进阶篇2:学会剖析(Profiling)GPU使用情况本篇文章将向您介绍如何使用GPU
8560 0
阿里云容器服务GPU监控2.0基础篇3:监控NVIDIA XID错误
|
数据可视化
mac环境下graphviz安装及使用
mac环境下graphviz安装及使用
4216 0
mac环境下graphviz安装及使用
|
6月前
|
人工智能 前端开发 机器人
10个优质独立开发者社区
以下是我整理的10个优质独立开发者社区,都是自己平时经常逛或参与过的,分类整理方便不同需求的开发者参考
|
7月前
|
机器学习/深度学习 存储 运维
机器学习异常检测实战:用Isolation Forest快速构建无标签异常检测系统
本研究通过实验演示了异常标记如何逐步完善异常检测方案和主要分类模型在欺诈检测中的应用。实验结果表明,Isolation Forest作为一个强大的异常检测模型,无需显式建模正常模式即可有效工作,在处理未见风险事件方面具有显著优势。
583 46
|
API 云栖大会
通义千问升级旗舰模型Qwen-Max,性能接近GPT-4o
通义旗舰模型Qwen-Max全方位升级,性能接近GPT-4o
6686 12
|
存储 编译器 C语言
C语言函数的定义与函数的声明的区别
C语言中,函数的定义包含函数的实现,即具体执行的代码块;而函数的声明仅描述函数的名称、返回类型和参数列表,用于告知编译器函数的存在,但不包含实现细节。声明通常放在头文件中,定义则在源文件中。
|
算法 安全 网络安全
非对称加密算法
非对称加密算法,如RSA、ECC、Diffie-Hellman、ElGamal和DSA,使用公钥/私钥对保证安全。公钥可公开,用于加密;私钥保密,用于解密和签名。这种算法在SSL/TLS、数字证书、签名、加密货币等领域广泛应用,提供更高安全性。
879 1