Data Science | 时间序列的索引与切片

简介: Data Science | 时间序列的索引与切片

时间序列的索引与切片

索引

时间序列的索引方法同样是适用于Dataframe,而且在时间序列中由于按照时间先后排序,故不用考虑顺序问题。

基本位置索引,使用的方法和列表类似:

from datetime import datetime
rng = pd.date_range('2017/1','2017/3')
ts = pd.Series(np.random.rand(len(rng)), index = rng)
print(ts.head())
print(ts[0])
print(ts[:2])
>>>
2017-01-01    0.107736
2017-01-02    0.887981
2017-01-03    0.712862
2017-01-04    0.920021
2017-01-05    0.317863
Freq: D, dtype: float64
0.107735945027
2017-01-01    0.107736
2017-01-02    0.887981
Freq: D, dtype: float64

除了基本位置索引之外还有时间序列标签索引:

from datetime import datetime
rng = pd.date_range('2017/1','2017/3')
ts = pd.Series(np.random.rand(len(rng)), index = rng)
print(ts['2017/1/2'])
print(ts['20170103'])
print(ts['1/10/2017'])
print(ts[datetime(2017,1,20)])
>>>
0.887980757812
0.712861778966
0.788336674948
0.93070380011
切片

切片的使用操作在上面索引部分的基本位置索引中有提到和Series按照index索引原理一样,也是末端包含。

rng = pd.date_range('2017/1','2017/3',freq = '12H')
ts = pd.Series(np.random.rand(len(rng)), index = rng)
print(ts['2017/1/5':'2017/1/10'])
>>>
2017-01-05 00:00:00    0.462085
2017-01-05 12:00:00    0.778637
2017-01-06 00:00:00    0.356306
2017-01-06 12:00:00    0.667964
2017-01-07 00:00:00    0.246857
2017-01-07 12:00:00    0.386956
2017-01-08 00:00:00    0.328203
2017-01-08 12:00:00    0.260853
2017-01-09 00:00:00    0.224920
2017-01-09 12:00:00    0.397457
2017-01-10 00:00:00    0.158729
2017-01-10 12:00:00    0.501266
Freq: 12H, dtype: float64
# 在这里我们可以传入月份可以直接获取整个月份的切片
print(ts['2017/2'].head())
>>>
2017-02-01 00:00:00    0.243932
2017-02-01 12:00:00    0.220830
2017-02-02 00:00:00    0.896107
2017-02-02 12:00:00    0.476584
2017-02-03 00:00:00    0.515817
Freq: 12H, dtype: float64
重复索引的时间序列
dates = pd.DatetimeIndex(['1/1/2015','1/2/2015','1/3/2015','1/4/2015','1/1/2015','1/2/2015'])
ts = pd.Series(np.random.rand(6), index = dates)
print(ts)
# 我们可以通过is_unique检查值或index是否重复
print(ts.is_unique,ts.index.is_unique)
>>>
2015-01-01    0.300286
2015-01-02    0.603865
2015-01-03    0.017949
2015-01-04    0.026621
2015-01-01    0.791441
2015-01-02    0.526622
dtype: float64
True False

按照上面的结果,可以看出在上面的时间序列中,出现了index(ts.index.is_unique)重复但值(ts.is_unique)不重复的情况。

我们可以通过时间序列把重复索引对应的值取平均值来解决索引重复的问题:

print(ts.groupby(level = 0).mean())
# 通过groupby做分组,重复的值这里用平均值处理
>>>
2015-01-01    0.545863
2015-01-02    0.565244
2015-01-03    0.017949
2015-01-04    0.026621
dtype: float64

巩固习题

1:如图创建时间序列(10*3,值为0-100的随机数),通过索引得到以下值:

① 索引得到前4行的所有值

② 索引得到2017-12-4 12:00:00的数据

③ 索引得到2017-12-4 - 2017-12-5的数据

相关文章
|
2月前
|
数据采集 数据挖掘 数据处理
如何在Pandas中将索引(index)转换为数据列
如何在Pandas中将索引(index)转换为数据列
233 0
|
3月前
|
数据挖掘 索引 Python
数据分析缺失值处理(Missing Values)——删除法、填充法、插值法
数据分析缺失值处理(Missing Values)——删除法、填充法、插值法
80 2
|
4月前
|
存储 数据可视化 数据处理
`geopandas`是一个开源项目,它为Python提供了地理空间数据处理的能力。它基于`pandas`库,并扩展了其对地理空间数据(如点、线、多边形等)的支持。`GeoDataFrame`是`geopandas`中的核心数据结构,它类似于`pandas`的`DataFrame`,但包含了一个额外的地理列(通常是`geometry`列),用于存储地理空间数据。
`geopandas`是一个开源项目,它为Python提供了地理空间数据处理的能力。它基于`pandas`库,并扩展了其对地理空间数据(如点、线、多边形等)的支持。`GeoDataFrame`是`geopandas`中的核心数据结构,它类似于`pandas`的`DataFrame`,但包含了一个额外的地理列(通常是`geometry`列),用于存储地理空间数据。
R语言之数据框的合并
R语言之数据框的合并
238 1
R语言之数据框的合并
|
数据挖掘 索引 Python
【Python】数据分析:numpy文本数据读取+索引切片
【Python】数据分析:numpy文本数据读取+索引切片
63 0
|
存储 机器学习/深度学习 数据可视化
Series(序列)
Series(序列)是数学和统计学中的概念,表示按照一定规律排列的一组数据。在计算机科学和数据分析领域,Series也是指一种数据结构,用于存储一维数据,并具有标签或索引。
148 2
|
索引 Python
Data Science | 这些时间序列的骚操作啊
Data Science | 这些时间序列的骚操作啊
|
存储 关系型数据库 数据挖掘
R语言-Chunk大型数据框与稀疏矩阵应对 as.matrix溢出异常 “problem too large”
本文提出一种在R里面将大型数据集通过分块的方式转换出 DataFrame和 SparseMatrix的方法,能有效避免内存溢出、程序崩溃等严重问题。
254 0
|
数据挖掘 索引
单细胞不同样本数据整合-解决AnnData合并时ValueError: cannot reindex from a duplicate axis问题
单细胞不同样本数据整合-解决AnnData合并时ValueError: cannot reindex from a duplicate axis问题
|
数据挖掘 索引 Python
【Python数据分析 - 12】:Series结构、pandas中值的获取和修改、切片操作与排序(pandas篇)
【Python数据分析 - 12】:Series结构、pandas中值的获取和修改、切片操作与排序(pandas篇)
235 0
【Python数据分析 - 12】:Series结构、pandas中值的获取和修改、切片操作与排序(pandas篇)