Win8Metro(C#)数字图像处理--2.25二值图像距离变换

简介: 原文:Win8Metro(C#)数字图像处理--2.25二值图像距离变换  [函数名称] 二值图像距离变换函数DistanceTransformProcess(WriteableBitmap src) [算法说明]  二值图像的距离变换实际上就是将二值图像转换为灰度图像,在二值图像中我们将图像分为目标图像和背景图像,假设目标图像像素值为1,即为白色,背景像素为0即为黑色。
原文: Win8Metro(C#)数字图像处理--2.25二值图像距离变换



[函数名称]

二值图像距离变换函数DistanceTransformProcess(WriteableBitmap src)

[算法说明]

 二值图像的距离变换实际上就是将二值图像转换为灰度图像,在二值图像中我们将图像分为目标图像和背景图像,假设目标图像像素值为1,即为白色,背景像素为0即为黑色。在转换后的幅灰度图像中,每个连通域的各个像素点的灰度级与该像素点到其背景像素的最近距离有关。其中灰度级最大点的集合为目标图像的骨架,就是目标图像中心部分的像素的集合,灰度级反应了背景像素与目标图像边界的影响关系。用数学语言表示如下:

 假设二值图像I包含一个连通域S,其中有目标O和背景B,距离图为D,则距离变换定义如下:

 

 

 

距离变换的具体步骤为:

     1,将图像中的目标像素点分类,分为内部点,外部点和孤立点。

以中心像素的四邻域为例,如果中心像素为目标像素(值为1)且四邻域都为目标像素(值为1),则该点为内部点。如果该中心像素为目标像素,四邻域为背景像素(值为0),则该中心点为孤立点,如下图所示。除了内部点和孤立点之外的目标区域点为边界点。

       6,对于孤立点保持不变。

 以上的距离变换方法由于计算量大,比较耗时,因此在实际应用中,我们采用一种倒角模版算法,只需要对图像进行两次扫描就可以实现距离变换。该方法称为Chamfer倒角距离变换法。

 该方法使用两个模版,分别为前向模版和后向模板,如下图所示:

 

 计算步骤如下:

 1,使用前向模板,对图像从上到下,从左到右进行扫描,模板中心0点对应的像素值如果为0则跳过,如果为1则计算模板中每个元素与其对应的像素值的和,分别为Sum1,Sum2,Sum3,Sum4Sum5,而中心像素值为这五个和值中的最小值。

 2,使用后向模板,对图像从下到上,从右到左进行扫描,方法同上。

 3,一般我们使用的模板为3*35*5,分别如下图所示:

 

                           

[函数代码]

       ///<summary>

       /// Distance transform of binary image.

       ///</summary>

       ///<param name="src">The source image.</param>

       ///<returns></returns>

       publicstaticWriteableBitmap DistanceTransformProcess(WriteableBitmap src)////25二值图像距离变换

       {

           if (src !=null)

           {

               int w = src.PixelWidth;

               int h = src.PixelHeight;

               WriteableBitmap expansionImage =newWriteableBitmap(w, h);

               byte[] temp = src.PixelBuffer.ToArray();

               int t1, t2, t3, t4, t5, min = 0;

               for (int y = 0; y < h; y++)

               {

                   for (int x = 0; x < w * 4 - 4; x += 4)

                   {

                       if (y == 0 || x == 0)

                       {

                           temp[x + y * w * 4] = 0;

                           temp[x + 1 + y * w * 4] = 0;

                           temp[x + 2 + y * w * 4] = 0;

                       }

                       else

                       {

                           if (temp[x + y * w * 4] != 0)

                           {

                               t1 = temp[x - 3 + (y - 1) * w * 4] + 4;

                               t2 = temp[x + (y - 1) * w * 4] + 3;

                               t3 = temp[x + 3 + (y - 1) * w * 4] + 4;

                               t4 = temp[x - 3 + y * w * 4] + 3;

                               t5 = temp[x + y * w * 4];

                               min = GetMin(t1, t2, t3, t4, t5);

                               temp[x + y * w * 4] = (byte)min;

                               temp[x + 1 + y * w * 4] = (byte)min; temp[x + 2 + y * w * 4] = (byte)min;

                           }

                           t2 = 0; t3 = 0; t4 = 0; t5 = 0; min = 0;

                       }

                   }

               }

               for (int y = h - 2; y > 0; y--)

               {

                   for (int x = w * 4 - 4; x > 0; x -= 4)

                   {

                       if (y == 1 || x == 3)

                       {

                           temp[x + y * w * 4] = 0;

                           temp[x + 1 + y * w * 4] = 0;

                           temp[x + 2 + y * w * 4] = 0;

                       }

                       else

                       {

                           if (temp[x + y * w * 4] != 0)

                           {

                               t1 = temp[x - 3 + (y + 1) * w * 4] + 4;

                               t2 = temp[x + (y + 1) * w * 4] + 3;

                               t3 = temp[x + 3 + (y + 1) * w * 4] + 4;

                               t4 = temp[x + 3 + y * w * 4] + 3;

                               t5 = temp[x + y * w * 4];

                               min = GetMin(t1, t2, t3, t4, t5);

                               temp[x + y * w * 4] = (byte)min;

                               temp[x + 1 + y * w * 4] = (byte)min; temp[x + 2 + y * w * 4] = (byte)min;

                           }

                           t2 = 0; t3 = 0; t4 = 0; t5 = 0; min = 0;

                       }

                   }

               }

               Stream sTemp = expansionImage.PixelBuffer.AsStream();

               sTemp.Seek(0, SeekOrigin.Begin);

               sTemp.Write(temp, 0, w * 4 * h);

               return expansionImage;

           }

           else

           {

               returnnull;

           }

       }

       privatestaticint GetMin(int a, int b,int c,int d,int e)

       {

           int t = (a < b ? a : b) < c ? (a < b ? a : b) : c;

           return ((t < d ? t : d) < e ? (t < d ? t : d) : e);

       }

[图像效果]

目录
相关文章
|
8月前
|
监控 API 开发工具
Baumer工业相机堡盟工业相机如何通过NEOAPI SDK获取每张图像的微秒时间和FrameID功能(C#)
Baumer工业相机堡盟工业相机如何通过NEOAPI SDK获取每张图像的微秒时间和FrameID功能(C#)
98 0
|
8月前
|
存储 传感器 开发工具
Baumer工业相机堡盟工业相机如何通过NEOAPI SDK修改图像像素格式Mono8或者Mono10(C#)
Baumer工业相机堡盟工业相机如何通过NEOAPI SDK修改图像像素格式Mono8或者Mono10(C#)
203 0
|
8月前
|
存储 数据处理 开发工具
Baumer工业相机堡盟工业相机如何通过NEOAPI SDK实现相机的高速图像保存(C#)
Baumer工业相机堡盟工业相机如何通过NEOAPI SDK实现相机的高速图像保存(C#)
75 0
|
8月前
|
监控 算法 开发工具
Baumer工业相机堡盟工业相机如何联合NEOAPI SDK和OpenCV实现获取图像并对图像进行边缘检测(C#)
Baumer工业相机堡盟工业相机如何联合NEOAPI SDK和OpenCV实现获取图像并对图像进行边缘检测(C#)
77 1
|
8月前
|
存储 监控 开发工具
Baumer工业相机堡盟工业相机如何联合NEOAPI SDK和OpenCV实现相机图像转换为AVI视频格式(C#)
Baumer工业相机堡盟工业相机如何联合NEOAPI SDK和OpenCV实现相机图像转换为AVI视频格式(C#)
74 0
|
8月前
|
数据采集 API 开发工具
Baumer工业相机堡盟工业相机如何通过BGAPI SDK实现Raw格式的图像保存(C#)
Baumer工业相机堡盟工业相机如何通过BGAPI SDK实现Raw格式的图像保存(C#)
74 0
|
8月前
|
存储 传感器 监控
Baumer工业相机堡盟工业相机如何通过BGAPISDK将相机图像高速保存到电脑内存(C#)
Baumer工业相机堡盟工业相机如何通过BGAPISDK将相机图像高速保存到电脑内存(C#)
112 0
|
4月前
|
数据采集 JavaScript C#
C#图像爬虫实战:从Walmart网站下载图片
C#图像爬虫实战:从Walmart网站下载图片
|
8月前
|
存储 数据处理 开发工具
Baumer工业相机堡盟工业相机如何通过NEOAPI SDK实现相机图像转换由Mono10转换为Mono8(C#)
Baumer工业相机堡盟工业相机如何通过NEOAPI SDK实现相机图像转换由Mono10转换为Mono8(C#)
95 0
|
8月前
|
存储 新制造 开发工具
Baumer工业相机堡盟工业相机如何联合NEOAPI SDK和OpenCV实现相机图像转换为Mat图像格式(C#)
Baumer工业相机堡盟工业相机如何联合NEOAPI SDK和OpenCV实现相机图像转换为Mat图像格式(C#)
80 0