tf.control_dependencies(self, control_inputs)
arguments:control_inputs: A list of `Operation` or `Tensor` objects which must be executed or computed before running the operations defined in the context. (注意这里control_inputs是list)
return: A context manager that specifies control dependencies for all operations constructed within the context.(返回所有在环境中的控制依赖的上下文管理器)
该方法可以控制操作(op)执行的顺序,不能为tensor
tf.identity(input, name=None)
Args:
input: A Tensor.
name: A name for the operation (optional).
Returns:A tensor with the same shape and contents as the input tensor or value.
源于StackOverFlow有个关于两者使用的例子:
- x = tf.Variable(0.0)
- x_plus_1 = tf.assign_add(x, 1)
- with tf.control_dependencies([x_plus_1]):
- y = x
- init = tf.global_variables_initializer()
- with tf.Session() as session:
- init.run()
- for i in range(5):
- print(y.eval())
输出变量x,结果也为0.0
说明x_plus_1操作并没有被执行,我认为虽然tf.control_dependencies参数中的op列表会在with包含的操作op执行之前先执行,但是y=x这个语句并不是一个op,而是一个tensor,所以执行y=x时,并不会执行tf.control_dependencies参数中的操作op。
所以可以将 y=x 修改为 y=tf.identity(x),此时这个语句就是一个操作op,要先执行tf.control_dependencies参数中的op列表,再执行y=tf.identity(x)操作,最终输出结果为1.0 2.0 3.0 4.0 5.0,最终变量x的结果也为5.0,完整程序如下:
- x = tf.Variable(0.0)
- x_plus_1 = tf.assign_add(x, 1)
- with tf.control_dependencies([x_plus_1]):
- y = tf.identity(x)
- init = tf.global_variables_initializer()
- with tf.Session() as session:
- init.run()
- for i in range(5):
- print(y.eval())
- print(x.eval())