众推平台架构——分布式爬虫

简介: 分布式爬虫架构 经过新一轮的投票,项目的范围已经基本确定。 大家决定 全力以付,集中攻克“分布式爬虫”。 分布式爬虫架构1 使用队列,即生产者,消费都模式。 由于生产者将规则生成到队列,然后由爬虫集群(消费者)到队列中取规则,然后按优先级等规则进行爬取。

分布式爬虫架构

经过新一轮的投票,项目的范围已经基本确定。

image

大家决定 全力以付,集中攻克“分布式爬虫”。

分布式爬虫架构1

使用队列,即生产者,消费都模式。

生产者消费者

由于生产者将规则生成到队列,然后由爬虫集群(消费者)到队列中取规则,然后按优先级等规则进行爬取。

分布式爬虫架构2

类似于webmagic,webmagic的是一个无须配置、便于二次开发的爬虫框架,它提供简单灵活的API,只需少量代码即可实现一个爬虫。webmagic采用完全模块化的设计,功能覆盖整个爬虫的生命周期(链接提取、页面下载、内容抽取、持久化),支持多线程抓取,分布式抓取,并支持自动重试、自定义UA/cookie等功能。

image

分布式爬虫架构3

分布式爬虫架构3,参考的Cola是一个分布式的爬虫框架,用户只需编写几个特定的函数,而无需关注分布式运行的细节。任务会自动分配到多台机器上,整个过程对用户是透明的。

基于Cola实现的爬虫位于contrib/目录下。目前实现了四个爬虫:

  • wiki:维基百科。

  • weibo:新浪微博爬虫。从初始用户出发,然后是其关注和粉丝,依次类推,抓取指定个数的新浪微博用户的微博、个人信息、关注和粉丝。其中,用户微博只获取了内容、赞的个数、转发和评论的个数等等,而没有具体去获取此微博被转发和评论的内容。

  • generic(unstable):通用爬虫,只需配置,而无需修改代码。目前Cola实现了一个抽取器(cola/core /extractor),能够从网页正文中自动抽取主要内容,即去除类似边栏和底脚等内容。但是,此抽取器目前准确度还不够,效率也不够高,所以需要谨慎 使用。

  • weibosearch(unstable):新浪微博搜索的爬虫。这个爬虫使用 cola.core.opener.SpynnerOpener,基于spynner实现了一个Opener能够执行JavaScript和Ajax代 码。目前这个爬虫存在的问题是:新浪微博可能会将其识别成机器人,因此有可能会让输入验证码。

wiki和weibo之前有所提及。主要说明generic和weibosearch。

image

分布式爬虫架构4

设计方式参考hadoop等分布式运算架构。

分布式爬虫架构4

控制结点类似于hadoop的namenode,工作结点类似于datanode。存储可以根据代理适配到DB或者Mongo集群等。

有想参与的可以一起进来讨论

群号 194338168
想深度参与的加,不想参与的就别往里进了,现在需要的主要是开发和文档两类人。群会定期往出清人! (项目会开源出来)

目录
相关文章
|
数据采集 存储 数据可视化
四个常见的爬虫框架
【5月更文挑战第10天】本文介绍了四个常见的爬虫框架或库:Scrapy、PySpider、Crawley和Portia。Scrapy是一个强大、组件化的爬虫框架,支持异步请求和XPath数据提取。PySpider提供WebUI,便于脚本编写和结果查看,适合初学者。Crawley擅长高速爬取,支持多种数据库和数据导出格式。Portia是可视化工具,适合无编程经验的用户。此外,还有BeautifulSoup和Grab等工具可供选择。选择爬虫工具应考虑项目需求、开发者技能和工具特性。
520 0
|
运维 JavaScript Java
govaluate 规则引擎
govaluate 规则引擎
2901 0
govaluate 规则引擎
多功能在线二维码生成源码
上传即可使用,可以把电子名片、文本、wifi网络、电子邮件、短信、电话号码、网址等信息生成对应的二维码图片。
342 24
多功能在线二维码生成源码
|
12月前
|
运维 Cloud Native 持续交付
云原生技术在现代IT架构中的深度应用与挑战####
【10月更文挑战第17天】 本文深入剖析了云原生技术的精髓,探讨其在现代IT架构转型中的核心作用与面临的挑战。云原生不仅是一种技术实现,更是企业数字化转型的重要推手,通过容器化、微服务、持续集成/持续部署(CI/CD)等关键要素,重塑软件开发、部署与运维模式。文章首先概述了云原生的基本原则与核心组件,随后分析了其如何促进企业敏捷性、可扩展性和资源利用率的提升,同时也指出了在安全性、复杂性管理及人才技能匹配等方面存在的挑战,并提出了相应的对策建议。 ####
160 6
|
12月前
|
运维 Cloud Native 安全
深入探索云原生架构
【10月更文挑战第12天】
105 2
|
机器学习/深度学习 算法 搜索推荐
关联规则挖掘:Apriori算法的深度探讨
关联规则挖掘:Apriori算法的深度探讨
1872 0
|
设计模式 Go 调度
Golang深入浅出之-Go语言中的并发模式:Pipeline、Worker Pool等
【5月更文挑战第1天】Go语言并发模拟能力强大,Pipeline和Worker Pool是常用设计模式。Pipeline通过多阶段处理实现高效并行,常见问题包括数据竞争和死锁,可借助通道和`select`避免。Worker Pool控制并发数,防止资源消耗,需注意任务分配不均和goroutine泄露,使用缓冲通道和`sync.WaitGroup`解决。理解和实践这些模式是提升Go并发性能的关键。
210 2
|
数据采集 JavaScript 前端开发
使用Python打造爬虫程序之破茧而出:Python爬虫遭遇反爬虫机制及应对策略
【4月更文挑战第19天】本文探讨了Python爬虫应对反爬虫机制的策略。常见的反爬虫机制包括User-Agent检测、IP限制、动态加载内容、验证码验证和Cookie跟踪。应对策略包括设置合理User-Agent、使用代理IP、处理动态加载内容、验证码识别及维护Cookie。此外,还提到高级策略如降低请求频率、模拟人类行为、分布式爬虫和学习网站规则。开发者需不断学习新策略,同时遵守规则和法律法规,确保爬虫的稳定性和合法性。
|
存储 C++ 容器
【STL】priority_queue的底层原理及其实现
【STL】priority_queue的底层原理及其实现
|
缓存 NoSQL Java
硬核 | Redis 布隆(Bloom Filter)过滤器原理与实战
硬核 | Redis 布隆(Bloom Filter)过滤器原理与实战
1231 0