几乎所有应用程序中都会有内存的分配和释放,而频繁的分配和释放内存无疑会产生内存碎片,降低系统性能,尤其对性能要求较高的程序比较明显。下面介绍几种常见的内存池技术。
一 环形缓存
环形缓存的基本原理如图:
初始化状态(wpos_ = rpos_):
写了部分数据,同时读了一部分数据(wpos_ > rpos_):
wpos_写数据到尾部后,又从头开始,rpos_还读到尾部(wpos_
rpos_读了N(N>= 1)圈后,赶上了wpos_,也就是说没有数据可读了(wpos_ ):
综合起来,看起来像这样子:
写了部分数据,同时读了一部分数据(wpos_ > rpos_):
wpos_写数据到尾部后,又从头开始,rpos_还读到尾部(wpos_
rpos_读了N(N>= 1)圈后,赶上了wpos_,也就是说没有数据可读了(wpos_ ):
综合起来,看起来像这样子:
需要注意的是:
#1 wpos_
#2 如果 | wpos_ - rpos |
部分实现代码如下:
点击(此处)折叠或打开
- #define EXTRA_BUFFER_SIZE 64
-
- namespace easy
- {
- templateclass _Type,class _Alloc >
- class EasyRingbuffer
- {
- public:
- typedef _Alloc allocator_type;
-
- explicit EasyRingbuffer(size_t size):
- size_(size),
- wpos_(0),
- rpos_(0)
- {
- buffer_ = _allocate(size_);
- }
-
- ~EasyRingbuffer() { _deallocate(buffer_,size_); }
-
- templatetypename T> void append(T val)
- {
- append((easy_uint8*)&val,sizeof(val));
- }
-
- void append(const easy_uint8* src, size_t cnt)
- {
- if (!cnt)
- {
- return;
- }
-
- // case 1: rpos_ = wpos_
- if (rpos_ = wpos_)
- {
- if (size_ - wpos_ >= cnt)
- {
- memmove(buffer_ + wpos_,src,cnt);
- wpos_ += cnt;
- return;
- }
- else
- {
- if (size_ - wpos_ + rpos_ > cnt) // >= is ok>
- {
- memmove(buffer_ + wpos_, src, size_ - wpos_);
- memmove(buffer_, src + size_ - wpos_, cnt - (size_ - wpos_));
- wpos_ = cnt - (size_ - wpos_);
- return;
- }
- else
- {
- _Type* new_buffer = _allocate(size_ + cnt - (size_ - wpos_));
- memmove(new_buffer,buffer_,wpos_);
- memmove(new_buffer + wpos_, src, cnt);
- _deallocate(buffer_,size_);
- size_ = size_ + cnt - (size_ - wpos_);
- wpos_ += cnt;
- buffer_ = new_buffer;
- return;
- }
- }
- }
- // case 2: rpos_ > wpos_
- else if(rpos_ > wpos_)
- {
- if (rpos_ - wpos_ > cnt) // >= is ok ?
- {
- if (rpos_ - wpos_ > cnt)
- {
- memmove(buffer_ + wpos_,src,cnt);
- wpos_ += cnt;
- return;
- }
- else
- {
- _Type* new_buffer = _allocate(size_ + cnt - (rpos_ - wpos_) + EXTRA_BUFFER_SIZE);
- memmove(new_buffer,buffer_,wpos_);
- memmove(new_buffer + wpos_,src,cnt);
- memmove(new_buffer + wpos_ + cnt - (rpos_ - wpos_) + EXTRA_BUFFER_SIZE,buffer_ + rpos_,size_ - rpos_);
- _deallocate(buffer_,size_);
- rpos_ += cnt - (rpos_ - wpos_) + EXTRA_BUFFER_SIZE;
- wpos_ += cnt;
- size_ = size_ + cnt - (rpos_ - wpos_) + EXTRA_BUFFER_SIZE;
- buffer_ = new_buffer;
- return;
- }
- }
- }
- }
-
- EasyRingbuffer& operator (easy_bool val)
- {
- appendeasy_bool>(val);
- return *this;
- }
-
- EasyRingbuffer& operator (easy_uint8 val)
- {
- appendeasy_uint8>(val);
- return *this;
- }
-
- EasyRingbuffer& operator (easy_uint16 val)
- {
- appendeasy_uint16>(val);
- return *this;
- }
-
- EasyRingbuffer& operator (easy_uint32 val)
- {
- appendeasy_uint32>(val);
- return *this;
- }
-
- EasyRingbuffer& operator (easy_uint64 val)
- {
- appendeasy_uint64>(val);
- return *this;
- }
-
- EasyRingbuffer& operator (easy_int8 val)
- {
- appendeasy_int8>(val);
- return *this;
- }
-
- EasyRingbuffer& operator (easy_int16 val)
- {
- appendeasy_int16>(val);
- return *this;
- }
-
- EasyRingbuffer& operator (easy_int32 val)
- {
- appendeasy_int32>(val);
- return *this;
- }
-
- EasyRingbuffer& operator (easy_int64 val)
- {
- appendeasy_int64>(val);
- return *this;
- }
-
- EasyRingbuffer& operator (easy_float val)
- {
- appendeasy_float>(val);
- return *this;
- }
-
- EasyRingbuffer& operator (easy_double val)
- {
- appendeasy_double>(val);
- return *this;
- }
-
- EasyRingbuffer& operator (const std::string& val)
- {
- append((easy_uint8 const*)val.c_str(),val.length());
- return *this;
- }
-
- EasyRingbuffer& operator (const char* val)
- {
- append((easy_uint8 const *)val, val ? strlen(val) : 0);
- return *this;
- }
-
- templatetypename T> T read()
- {
- T r;
- read((easy_uint8*)&r,sizeof(T));
- return r;
- }
-
- void read(easy_uint8* des,size_t len)
- {
- if (_read_finish())
- {
- return;
- }
- if (rpos_ wpos_)
- {
- if (wpos_ - rpos_ >= len)
- {
- memmove(des,buffer_ + rpos_,len);
- rpos_ += len;
- }
- // else just skip
- }
- else if (rpos_ > wpos_)
- {
- if (size_ - rpos_ >= len)
- {
- memmove(des,buffer_ + rpos_,len);
- rpos_ += len;
- }
- else
- {
- memmove(des,buffer_ + rpos_, size_ - rpos_);
- memmove(des + size_ - rpos_, buffer_, len - (size_ - rpos_));
- rpos_ = len - (size_ - rpos_);
- }
- }
- }
-
- EasyRingbuffer& operator >> (easy_bool& val)
- {
- val = readeasy_bool>();
- return *this;
- }
-
- EasyRingbuffer& operator >> (easy_uint8& val)
- {
- val = readeasy_uint8>();
- return *this;
- }
-
- EasyRingbuffer& operator >> (easy_uint16& val)
- {
- val = readeasy_uint16>();
- return *this;
- }
-
- EasyRingbuffer& operator >> (easy_uint32& val)
- {
- val = readeasy_uint32>();
- return *this;
- }
-
- EasyRingbuffer& operator >> (easy_uint64& val)
- {
- val = readeasy_uint64>();
- return *this;
- }
-
- EasyRingbuffer& operator >> (easy_int8& val)
- {
- val = readeasy_int8>();
- return *this;
- }
-
- EasyRingbuffer& operator >> (easy_int16& val)
- {
- val = readeasy_int16>();
- return *this;
- }
-
- EasyRingbuffer& operator >> (easy_int32& val)
- {
- val = readeasy_int32>();
- return *this;
- }
-
- EasyRingbuffer& operator >> (easy_int64& val)
- {
- val = readeasy_int64>();
- return *this;
- }
-
- EasyRingbuffer& operator >> (easy_float& val)
- {
- val = readeasy_float>();
- return *this;
- }
-
- EasyRingbuffer& operator >> (easy_double& val)
- {
- val = readeasy_double>();
- return *this;
- }
-
- size_t size() const { return size_; }
-
- size_t rpos() const { return rpos_; }
-
- size_t wpos() const { return wpos_; }
-
- private:
- _Type* _allocate(size_t size)
- {
- _Type* res = 0;
- res = static_cast_Type*>(alloc_type_.allocate(size));
- return res;
- }
-
- void _deallocate(void* p,size_t size)
- {
- alloc_type_.deallocate(p,size);
- }
-
- void _reallocate(void* p,size_t old_size,size_t new_size) { alloc_type_.reallocate(p,old_size,new_size); }
-
- easy_bool _read_finish() { return wpos_ == rpos_; }
-
- private:
- EasyRingbuffer ( const EasyRingbuffer& );
- EasyRingbuffer& operator = ( const EasyRingbuffer& );
- private:
- size_t size_;
-
- _Type* buffer_;
-
- size_t wpos_;
-
- size_t rpos_;
-
- allocator_type alloc_type_;
- };
- }
二 空闲列表
空闲列表的原理比较简单,一般用于比较大的对象,可预分配一定数量的对象,需要时直接空闲列表中取,使用完后收回,如果空闲列表中已空,则需要重新设置大小了;也可使用时分配,使用完后收回。实现代码如下:
点击(此处)折叠或打开
- // use stl
- templatetypename _Type, typename _Lock,typename _StorageType /*= std::list_Type*>*/>
- class lock_queue
- {
- typedef typename _Type::_Key _Key;
-
- static const size_t MAX_POOL_SIZE = _Type::MAX_POOL_SIZE;
-
- public:
- _Type* allocate(_Key __key)
- {
- _Type* __ret = 0;
- if (free_list_.empty())
- {
- __ret = new _Type(__key);
- }
- else
- {
- lock_.acquire_lock();
- __ret = free_list_.back();
- free_list_.pop_back();
- lock_.release_lock();
- }
- return __ret;
- }
-
- void deallcate(_Type* __val)
- {
- if (!__val)
- {
- return;
- }
- if (MAX_POOL_SIZE free_list_.size())
- {
- delete __val;
- return;
- }
- lock_.acquire_lock();
- free_list_.push_back(__val);
- lock_.release_lock();
- }
-
- size_t free_size() /*const*/
- {
- size_t __size = 0;
- lock_.acquire_lock();
- __size = free_list_.size();
- lock_.release_lock();
- return __size;
- }
-
- void clear()
- {
- lock_.acquire_lock();
- for (typename _StorageType::iterator __it = free_list_.begin(); __it != free_list_.end(); ++__it)
- {
- if ((*__it))
- {
- delete (*__it);
- (*__it) = NULL;
- }
- }
- free_list_.clear();
- _StorageType().swap(free_list_);
- lock_.release_lock();
- }
-
- ~lock_queue()
- {
- clear();
- }
- private:
- _Lock lock_;
- _StorageType free_list_;
- };
点击(此处)折叠或打开
- //anther way,use use stl
- template typename T, int DEFAULT_BLOCK_NUM = 1024 >
- class CMemoryPool
- {
- public:
- static VOID* operator new ( std::size_t nAllocLength )
- {
- Assert( sizeof(T) == nAllocLength );
- Assert( sizeof(T) >= sizeof(UCHAR*) );
- if ( !m_sNewPointer )
- {
- allocBlock();
- }
- UCHAR* ucReturnPointer = m_sNewPointer;
- //the head of 4 bytes is explain the next pointer of memory force,
- //and m_NewPointer just point the next block of memory,when used the next allocation
- m_sNewPointer = *reinterpret_castUCHAR**>( ucReturnPointer);
- return ucReturnPointer;
- }
-
- static VOID operator delete( void* vpDeletePointer )
- {
- *reinterpret_castUCHAR**>( vpDeletePointer) = m_sNewPointer;
- m_sNewPointer = static_castUCHAR*>(vpDeletePointer);
- }
-
- static VOID allocBlock()
- {
- m_sNewPointer = new UCHAR[sizeof(T) * DEFAULT_BLOCK_NUM];
- //casting dual pointer force,that will change the meaning of the head of 4 byte memory
- UCHAR **ppCurent = reinterpret_castUCHAR**>( m_sNewPointer );
- UCHAR *ppNext = m_sNewPointer;
- for( int i = 0; i DEFAULT_BLOCK_NUM-1; i++ )
- {
- ppNext += sizeof(T);
- *ppCurent = ppNext;
- //the head of 4 bytes is explain the next pointer of memory force,a memory list in form.
- ppCurent = reinterpret_castUCHAR**>( ppNext );
- }
- //if the last memory bock, the head of 4 byte is null
- *ppCurent = 0;
- }
-
- protected:
- virtual ~CMemoryPool()
- {
-
- }
- private:
- static UCHAR *m_sNewPointer;
- };
-
- templateclass T, int BLOCK_NUM >
- UCHAR *CMemoryPoolT, BLOCK_NUM >::m_sNewPointer;
三 stl的二级分配器
stl内部实现的分配器分两种情况:一种是大于128byte的分配,直接使用系统的内存分配函数malloc/free;另外一种为小于128byte的,也就是上面说的二级分配器,它采用了某些技术来管来内存,避免频繁分配释放。简单的说,就是将内存按8字节对齐,分别建立固定值倍数大小的内存池,如8, 8*2 ,8*3..., 当需要分配内存时,根据分配内存的大小,算出所需内存大小的内存池索引,然后根据这个索引找到那块内存池,并从中取出一块返回;同样,内存使用完后,按类似的方法回收。这种方案一般适用于比较小的内存分配的情况,大的可以考虑其他的方案。其流程如下:
下面是具体代码:
参考:
sqi stl
http://www.sgi.com/tech/stl/
下面是具体代码:
点击(此处)折叠或打开
- template bool threads, int inst >
- class __default_alloc_template
- {
- enum {_ALIGN = 8};
- enum {_MAX_BYTES = 128};
- enum {_NFREELISTS = 16}; // _MAX_BYTES/_ALIGN
-
- static size_t _S_round_up(size_t __bytes) { return (((__bytes) + (size_t) _ALIGN-1) & ~((size_t) _ALIGN - 1)); }
-
- static size_t _S_freelist_index(size_t __bytes) { return (((__bytes) + (size_t)_ALIGN-1)/(size_t)_ALIGN - 1); }
-
- union _Obj
- {
- union _Obj* _M_free_list_link;
- char _M_client_data[1]; /* The client sees this. */
- };
- static _Obj* volatile _S_free_list[_NFREELISTS];
-
- // Returns an object of size __n, and optionally adds to size __n free list.
- static void* _S_refill(size_t __n);
-
- // Allocates a chunk for nobjs of size size. nobjs may be reduced
- // if it is inconvenient to allocate the requested number.
- static char* _S_chunk_alloc(size_t __size, int& __nobjs);
-
- static void* reallocate(void* __p, size_t __old_sz, size_t __new_sz);
-
- // Chunk allocation state.
- static char* _S_start_free;
- static char* _S_end_free;
- static size_t _S_heap_size;
-
- public:
- static void* allocate(size_t __n)
- {
- void* __ret = 0;
- if (__n > (size_t) _MAX_BYTES)
- {
- __ret = malloc_alloc::allocate(__n);
- }
- else
- {
- mutex_lock __lock;
- __lock.acquire_lock();
- _Obj* volatile* __my_free_list = _S_free_list + _S_freelist_index(__n);
- _Obj* volatile __result = *__my_free_list;
- if (__result == 0)
- {
- __ret = _S_refill(_S_round_up(__n));
- }
- else
- {
- *__my_free_list = __result -> _M_free_list_link;
- __ret = __result;
- }
- __lock.release_lock();
- }
- return __ret;
- }
-
- /* __p may not be 0 */
- static void deallocate(void* __p, size_t __n)
- {
- if (__n > (size_t) _MAX_BYTES)
- {
- malloc_alloc::deallocate(__p, __n);
- }
- else
- {
- mutex_lock __lock;
- __lock.acquire_lock();
- _Obj* volatile* __my_free_list = _S_free_list + _S_freelist_index(__n);
- _Obj* __q = (_Obj*)__p;
- __q -> _M_free_list_link = *__my_free_list;
- *__my_free_list = __q;
- __lock.release_lock();
- }
- }
- };
-
- template bool __threads, int __inst>
- inline bool operator==(const __default_alloc_template__threads, __inst>&,
- const __default_alloc_template__threads, __inst>&)
- {
- return true;
- }
-
- template bool __threads, int __inst>
- inline bool operator!=(const __default_alloc_template__threads, __inst>&,
- const __default_alloc_template__threads, __inst>&)
- {
- return false;
- }
-
- /* We allocate memory in large chunks in order to avoid fragmenting */
- /* the malloc heap too much. */
- /* We assume that size is properly aligned. */
- /* We hold the allocation lock. */
- template bool __threads, int __inst>
- char* __default_alloc_template__threads, __inst>::_S_chunk_alloc(size_t __size, int& __nobjs)
- {
- //::_set_new_handler(_out_of_memory);
- char* __result;
- size_t __total_bytes = __size * __nobjs;
- size_t __bytes_left = _S_end_free - _S_start_free;
- // enough memory to alloc
- if (__bytes_left >= __total_bytes)
- {
- __result = _S_start_free;
- _S_start_free += __total_bytes;
- return(__result);
- }
- // only more than __size can be alloc
- else if (__bytes_left >= __size)
- {
- __nobjs = (int)(__bytes_left/__size);
- __total_bytes = __size * __nobjs;
- __result = _S_start_free;
- _S_start_free += __total_bytes;
- return(__result);
- }
- else
- {
- size_t __bytes_to_get = 2 * __total_bytes + _S_round_up(_S_heap_size >> 4);
- // Try to make use of the left-over piece.
- if (__bytes_left > 0)
- {
- _Obj* volatile* __my_free_list = _S_free_list + _S_freelist_index(__bytes_left);
- ((_Obj*)_S_start_free) -> _M_free_list_link = *__my_free_list;
- *__my_free_list = (_Obj*)_S_start_free;
- }
- // alloc __bytes_to_get again
- _S_start_free = (char*)malloc(__bytes_to_get);
-
- // alloc failed
- if (0 == _S_start_free)
- {
- size_t __i;
- _Obj* volatile* __my_free_list;
- _Obj* __p;
- // Try to make do with what we have. That can't
- // hurt. We do not try smaller requests, since that tends
- // to result in disaster on multi-process machines.
- for (__i = __size; __i = (size_t) _MAX_BYTES; __i += (size_t) _ALIGN)
- {
- __my_free_list = _S_free_list + _S_freelist_index(__i);
- __p = *__my_free_list;
- if (0 != __p)
- {
- *__my_free_list = __p -> _M_free_list_link;
- _S_start_free = (char*)__p;
- _S_end_free = _S_start_free + __i;
- return(_S_chunk_alloc(__size, __nobjs));
- // Any leftover piece will eventually make it to the
- // right free list.
- }
- }
- _S_end_free = 0; // In case of exception.
- _S_start_free = (char*) malloc(__bytes_to_get);
- // This should either throw an
- // exception or remedy the situation. Thus we assume it
- // succeeded.
- }
- _S_heap_size += __bytes_to_get;
- _S_end_free = _S_start_free + __bytes_to_get;
- return(_S_chunk_alloc(__size, __nobjs));
- }
- }
-
- /* Returns an object of size __n, and optionally adds to size __n free list.*/
- /* We assume that __n is properly aligned. */
- /* We hold the allocation lock. */
- template bool __threads, int __inst>
- void* __default_alloc_template__threads, __inst>::_S_refill(size_t __n)
- {
- int __nobjs = 20;
- char* __chunk = _S_chunk_alloc(__n, __nobjs);
- _Obj* volatile* __my_free_list;
- _Obj* __result;
- _Obj* __current_obj;
- _Obj* __next_obj;
- int __i;
-
- if (1 == __nobjs)
- {
- return(__chunk);
- }
- __my_free_list = _S_free_list + _S_freelist_index(__n);
-
- /* Build free list in chunk */
- __result = (_Obj*)__chunk;
- *__my_free_list = __next_obj = (_Obj*)(__chunk + __n);
- for (__i = 1; ; __i++)
- {
- __current_obj = __next_obj;
- __next_obj = (_Obj*)((char*)__next_obj + __n);
- if (__nobjs - 1 == __i)
- {
- __current_obj -> _M_free_list_link = 0;
- break;
- }
- else
- {
- __current_obj -> _M_free_list_link = __next_obj;
- }
- }
- return(__result);
- }
-
- template bool threads, int inst>
- void* __default_alloc_templatethreads, inst>::reallocate(void* __p, size_t __old_sz, size_t __new_sz)
- {
- mutex_lock __lock;
- __lock.acquire_lock();
- void* __result;
- size_t __copy_sz;
-
- if (__old_sz > (size_t) _MAX_BYTES && __new_sz > (size_t) _MAX_BYTES)
- {
- __lock.release_lock();
- return(realloc(__p, __new_sz));
- }
- if (_S_round_up(__old_sz) == _S_round_up(__new_sz))
- {
- __lock.release_lock();
- return(__p);
- }
- __result = allocate(__new_sz);
- __copy_sz = __new_sz > __old_sz? __old_sz : __new_sz;
- memcpy(__result, __p, __copy_sz);
- deallocate(__p, __old_sz);
- __lock.release_lock();
- return(__result);
- }
-
- template bool threads, int inst >
- char* __default_alloc_templatethreads, inst>::_S_start_free = 0;
-
- template bool threads, int inst >
- char* __default_alloc_templatethreads, inst>::_S_end_free = 0;
-
- template bool threads, int inst >
- size_t __default_alloc_templatethreads, inst>::_S_heap_size = 0;
-
- template bool __threads, int __inst>
- typename __default_alloc_template__threads, __inst>::_Obj* volatile
- __default_alloc_template__threads, __inst> ::_S_free_list[_NFREELISTS] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, };
参考:
sqi stl
http://www.sgi.com/tech/stl/