pandas.sort_values

简介:
sort_values(by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last') method of pandas.core.frame.DataFrame instance
    Sort by the values along either axis
    
    .. versionadded:: 0.17.0
    
    Parameters
    ----------
    by : str or list of str
        Name or list of names which refer to the axis items.
    axis : {0 or 'index', 1 or 'columns'}, default 0
        Axis to direct sorting
    ascending : bool or list of bool, default True
         Sort ascending vs. descending. Specify list for multiple sort
         orders.  If this is a list of bools, must match the length of
         the by.
    inplace : bool, default False
         if True, perform operation in-place
    kind : {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort'
         Choice of sorting algorithm. See also ndarray.np.sort for more
         information.  `mergesort` is the only stable algorithm. For
         DataFrames, this option is only applied when sorting on a single
         column or label.
    na_position : {'first', 'last'}, default 'last'
         `first` puts NaNs at the beginning, `last` puts NaNs at the end
    
    Returns
    -------
    sorted_obj : DataFrame
    
    Examples
    --------
    >>> df = pd.DataFrame({
    ...     'col1' : ['A', 'A', 'B', np.nan, 'D', 'C'],
    ...     'col2' : [2, 1, 9, 8, 7, 4],
    ...     'col3': [0, 1, 9, 4, 2, 3],
    ... })
    >>> df
        col1 col2 col3
    0   A    2    0
    1   A    1    1
    2   B    9    9
    3   NaN  8    4
    4   D    7    2
    5   C    4    3
    
    Sort by col1
    
    >>> df.sort_values(by=['col1'])
        col1 col2 col3
    0   A    2    0
    1   A    1    1
    2   B    9    9
    5   C    4    3
    4   D    7    2
    3   NaN  8    4
    
    Sort by multiple columns
    
    >>> df.sort_values(by=['col1', 'col2'])
        col1 col2 col3
    1   A    1    1
    0   A    2    0
    2   B    9    9
    5   C    4    3
    4   D    7    2
    3   NaN  8    4
    
    Sort Descending
    
    >>> df.sort_values(by='col1', ascending=False)
        col1 col2 col3
    4   D    7    2
    5   C    4    3
    2   B    9    9
    0   A    2    0
    1   A    1    1
    3   NaN  8    4
    
    Putting NAs first
    
    >>> df.sort_values(by='col1', ascending=False, na_position='first')
        col1 col2 col3
    3   NaN  8    4
    4   D    7    2
    5   C    4    3
    2   B    9    9
    0   A    2    0
    1   A    1    1

目录
相关文章
|
7月前
|
数据处理 索引 Python
Pandas中concat的用法
Pandas中concat的用法
199 1
|
3月前
|
数据处理 Python
Pandas中的drop_duplicates()方法详解
Pandas中的drop_duplicates()方法详解
186 2
|
7月前
|
Python
使用Python pandas的sort_values()方法可按一个或多个列对DataFrame排序
【5月更文挑战第2天】使用Python pandas的sort_values()方法可按一个或多个列对DataFrame排序。示例代码展示了如何按'Name'和'Age'列排序 DataFrame。先按'Name'排序,再按'Age'排序。sort_values()的by参数接受列名列表,ascending参数控制排序顺序(默认升序),inplace参数决定是否直接修改原DataFrame。
361 1
|
7月前
|
人工智能 程序员 数据处理
Pandas数据处理3、DataFrame去重函数drop_duplicates()详解
Pandas数据处理3、DataFrame去重函数drop_duplicates()详解
168 0
Pandas数据处理3、DataFrame去重函数drop_duplicates()详解
pandas list\dict 转换为DataFrame
pandas list\dict 转换为DataFrame
pandas list\dict 转换为DataFrame
|
索引 Python
Pandas 的Merge函数详解
在日常工作中,我们可能会从多个数据集中获取数据,并且希望合并两个或多个不同的数据集。这时就可以使用Pandas包中的Merge函数。在本文中,我们将介绍用于合并数据的三个函数
183 1
|
Cloud Native Go Python
解决Pandas KeyError: “None of [Index([...])] are in the [columns]“问题
解决Pandas KeyError: “None of [Index([...])] are in the [columns]“问题
373 0
|
存储 SQL 数据可视化
Python 之 Pandas merge() 函数、set_index() 函数、drop_duplicates() 函数和 tolist() 函数
Python 之 Pandas merge() 函数、set_index() 函数、drop_duplicates() 函数和 tolist() 函数
Pandas: count() 与 value_counts() 对比
Pandas: count() 与 value_counts() 对比
Pandas: count() 与 value_counts() 对比
Pandas pd.merge() 报错:ValueError: You are trying to merge on int64 and object columns.
Pandas pd.merge() 报错:ValueError: You are trying to merge on int64 and object columns.
Pandas pd.merge() 报错:ValueError: You are trying to merge on int64 and object columns.