运行ORB-SLAM笔记_编译篇(一)

简介: 1.下载代码   https://github.com/raulmur/ORB_SLAM/    (同时也可以看看作者的牛叉论文,我是打算先用代码,再回头看论文) 2.打开后如下                  就好像是用一件新产品一样,我们首先要看一下说明书“README.

1.下载代码   https://github.com/raulmur/ORB_SLAM/    (同时也可以看看作者的牛叉论文,我是打算先用代码,再回头看论文)

2.打开后如下

                

就好像是用一件新产品一样,我们首先要看一下说明书“README.md”,

README.md介绍了很多关于这个工程的东西,比如作者,发表的论文,研究的人员,代码的下载以及更新

那么我们首先从有用的信息开始操作:(备注:以下内容都是我的个人理解,都是别人的东西,我拿来学习而已)

3.解决依赖项

    3.1 Boost   :用这个Boost库在SLAM运行过程中开辟不同的线程

             

3.2 ROS:使用ROS采集摄像头或者记录下来的视频(rosbag)的图像信息,进行可视化

 我的电脑安装的是indigo版本的所以安装教程是:wiki.ros.org/indigo/Installation/Ubuntu

安装完成运行  roscore 出现如下界面说明安装成功,同时也就可以学习ROS的基本教程了

            wiki.ros.org/ROS/Tutorials

       

3.3 OpenCV 使用OpenCV去处理图像特征,ORB-SLAM的OpenCV版本是OpenCV 2.4,下载和安装OpenCV

   http://opencv.org/  或者任意百度一下都有好多教程。

3.4 g20(第三方库) 这里用的是修改后的G2O版本,那么原始代码在 https://github.com/RainerKuemmerle/g2o ,G2O即是通用图优化,g2o是一个算法集的C++实现,根据前人求解非线性最小二乘的理论,根据具体的问题,选用最合适的算法,

为了能够编译G2O,需要安装一些东东是:BLAS, LAPACK and Eigen3,直接命令:

                          sudo apt-get install libblas-dev
                          sudo apt-get install liblapack-dev
                          sudo apt-get install libeigen3-dev

3.5 DBow2(第三方库)DBow2是一种高效的回环检测算法,DBOW2算法的全称为Bags of binary words for fast place recognition in image sequence,使用的特征检测算法为Fast,描述子使用的是brief描述子,是一种离线的方法。使用了DBow2和DLib库的一些算法,进行位置识别和特征匹配,不需要为它添加其他依赖项(代码地址: https://github.com/dorian3d/DBoW2)

4.安装

      4.1  确认已经安装了ROS以及他的依赖项 (boost, eigen3, opencv, blas, lapack).

      添加所下在的ORB-SLAM的路径到环境变量下,比如我的ORB-SLAM的路径为:

所以需要打开配置ubuntu环境变量的~/.bashrc文件,在文件最底处添加如图所示的命令行:然后source ~/.bashrc.

       

 4.2 build g2o 安照说明一步一步来

        前往 /home/salm/Monocular/ORB_SLAM/Thirdparty/g2o ;  

    依次命令为:     cd  ~/Monocular/ORB_SLAM/Thirdparty/g2o

                               mkdir build
                              cd build
                              cmake .. -DCMAKE_BUILD_TYPE=Release
                              make

g2o编译成功。

4.3 Buid DB0W2  与编译g2o时相似命令如下

                              cd ~/Monocular/ORB_SLAM/Thirdparty/DBoW2                  

                              mkdir build
                              cd build
                              cmake .. -DROS_BUILD_TYPE=Release
                              make

4.4 Build ORB-SLAM,这里有一个提示**If you use ROS Indigo, remove the depency of opencv2 in the manifest.xml.**

(按照理解就是把manifest.xml中的opencv2注释就好了呗),如下图:



          

  然后就按照步骤来执行,

更改之后就可以进入编译:

                                  cd  ~/Monocular/ORB_SLAM

                                  mkdir build
                                  cd build
                                  cmake .. -DROS_BUILD_TYPE=Release
                                  make

但是在执行到cmake .. -DROS_BUILD_TYPE=Release发现会有错误,

    

然后就开始百度搜索答案呗,我也是这样想的,就会看到此博客  http://blog.csdn.net/wishchin/article/details/50468950

就会提示说路径设置有问题,然后我就各种设置,每设置一次就编译一次,只记得用了好长时间,都没有成功,过了一段时间

  想想  我应该把这三个都注释掉就有

            <!--<depend package="opencv2"/>
            <depend package="image_transport"/>
            <depend package="cv_bridge"/> -->

 如下图然后执行cmake .. -DROS_BUILD_TYPE=Release这样虽然生成了Makefile,但是在接下来的make肯定会出错的,因为我们把所有关于opencv的依赖项都给注释了

所以就导致编译出错了(但是这里可以我也没找到什么原因,为什么我按照说明书,却行不通,我怀疑是我的opencv没有安装好,或者路径设置不对,但是这些都不管了,我知道我已经安装了opencv)

(注释了三个依赖项然后make 的结果如下图)

 可能也会出现其他错误,提示找不到opnecv的库函数,或者说找不cv_bridge等函数

 

所以我就按照网上找各种方案的就结合我就只是把manifest.xml文件注释了OPENCV2,进去到ORB_SALM文件下:

  

执行:

后面是我手动添加的opencv的链接库,

                        cmake .. && make -lopencv_core -lopencv_imgproc -lopencv_highgui -lopencv_objdetect -lopencv_nonfree

如下图,

(也就是说在我的电脑上(ubuntu14.04 32位 ros_indigo)在camke 和make 都需要添加opencv 的链接库,编译成功了)

因为创建了两个工作空间导致我的程序又出错误了,之前运行

rosrun ORB_SLAM ORB_SLAM /home/salm/ORB_SLAM/Data/ORBvoc.txt /home/salm/ORB_SLAM/Data/Settings.yaml
 rosrun ORB_SLAM ORB_SLAM ~/ORB_SLAM/Data/ORBvoc.txt ~/ORB_SLAM/Data/Settings.yaml
都是可以运行的,不知道为啥又出现错误了

就是很不知怎么回事说我的路径有问题

后来我运行

 rosrun ORB_SLAM ORB_SLAM /Data/ORBvoc.txt /Data/Settings.yaml
(不是绝对路径,而是在ORB_SLAM路径下的绝对路径)就可以运行了

 

以下是我在整理问题是所遇到的有关的网页

askubuntu.com/questions/510606/error-adding-symbols-dso-missing-from-command-line

 blog.csdn.net/dreamer_lhs/article/details/51297432

 www.voidcn.com/blog/wishchin/article/p-4970975.html

blog.csdn.net/real_myth/article/details/51798557

blog.csdn.net/dourenyin/article/details/48055441

 

相关实践学习
使用ROS创建VPC和VSwitch
本场景主要介绍如何利用阿里云资源编排服务,定义资源编排模板,实现自动化创建阿里云专有网络和交换机。
ROS入门实践
本课程将基于基础设施即代码 IaC 的理念,介绍阿里云自动化编排服务ROS的概念、功能和使用方式,并通过实际应用场景介绍如何借助ROS实现云资源的自动化部署,使得云上资源部署和运维工作更为高效。
相关文章
|
人工智能 Prometheus Cloud Native
新场景、新能力,AI-native 时代的可观测革新
借助 AI-native 可观测解决方案,阿里云为用户提供开箱即用的覆盖大模型应用、大模型到基础设施的全链路实时观测、告警与诊断能力,帮助企业在复杂的数字化转型过程中更有效地确保资源的高效利用与业务的持续成功。
900 120
|
9月前
“可以成为我的恋人吗”HTML源码
“可以成为我的恋人吗”HTML源码,双击html文件可以本地运行,打开HTML页面,上面显示可以或者不要,越是拒绝,可以的按钮就会越来越大,直到点击可以为止
994 0
“可以成为我的恋人吗”HTML源码
|
12月前
|
缓存 人工智能 自然语言处理
GraphRAG、Naive RAG框架总结主流框架推荐(共23个):LightRAG、nano-GraphRAG、Fast-GraphRAG、Dify、RAGflow等
GraphRAG、Naive RAG框架总结主流框架推荐(共23个):LightRAG、nano-GraphRAG、Fast-GraphRAG、Dify、RAGflow等
|
12月前
|
机器学习/深度学习 数据采集 传感器
基于深度学习的图像识别技术在自动驾驶中的应用研究####
本文旨在探讨深度学习技术,特别是卷积神经网络(CNN)在自动驾驶车辆图像识别领域的应用与进展。通过分析当前自动驾驶技术面临的挑战,详细介绍了深度学习模型如何提升环境感知能力,重点阐述了数据预处理、网络架构设计、训练策略及优化方法,并展望了未来发展趋势。 ####
427 6
|
12月前
|
边缘计算 运维 Cloud Native
阿里云基于云原生的大规模云边协同关键技术及应用荣获浙江省科学技术进步一等奖
11月22日, 2023年度浙江省科学技术奖获奖成果公布,阿里云与浙江大学、支付宝、谐云科技联合完成的基于云原生的大规模云边协同关键技术及应用获得浙江省科学技术进步一等奖。
|
11月前
|
机器学习/深度学习 人工智能 前端开发
【AI系统】图算 IR
本文全面介绍了计算图的概念及其在AI框架中的应用,涵盖计算图的基本构成、与自动微分的关系、静态图与动态图的生成及特点,以及计算图对AI编译器的重要作用。文章详细解析了计算图的结构,包括张量和算子的角色,探讨了AI框架如何通过计算图实现自动微分,同时对比了静态图和动态图的优缺点,指出了计算图在优化AI编译器性能方面的关键作用。
315 0
|
机器学习/深度学习 人工智能 安全
针对AI模型的对抗性攻击日益增多:你现在应该怎么做?
针对AI模型的对抗性攻击日益增多:你现在应该怎么做?
|
存储 分布式计算 大数据
阿里云 EMR 强势助力,与阿里云大数据体系共创辉煌,把握时代热点,开启生态建设之旅
【8月更文挑战第26天】阿里云EMR(Elastic MapReduce)是一种大数据处理服务,与阿里云的多个服务紧密结合,共同构建了完善的大数据生态系统。EMR与对象存储服务(OSS)集成,利用OSS提供可靠、低成本且可扩展的数据存储;与MaxCompute集成,实现深度数据分析和挖掘;还支持数据湖构建服务,加速数据湖的搭建并简化数据管理与分析过程。EMR提供多种编程接口及工具,如Hive、Spark和Flink等,帮助用户高效完成大数据处理任务。
439 2
|
开发工具 数据安全/隐私保护 开发者
最全的 pip 使用指南,50% 你可能没用过。
最全的 pip 使用指南,50% 你可能没用过。
405 1
|
供应链 算法
深度 | 5分钟读懂阿里零售通智慧供应链平台
大家好,先做个简单自我介绍,过去十年更多是在2B类业务方面做技术架构和研发工作,近两年专注在零售通供应链方面的技术架构和研发的工作。从技术视角分享二点最近几年感受比较深刻的,第一个点,从技术的架构的升级,从过去的电商架构到现在新零售的架构,比如从过去信息平台到交易平台再到现在供应链协同平台,其架构演进的核心动力是互联网、大数据等技术与商业不断融合和发展。
14270 0